The bat Hipposideros bicolor (Hipposideridae, Microchiroptera) is the mammalian species with the highest upper limit of hearing in which the structure of the organ of Corti has been studied. H. bicolor emits pure tone echo-locating signals of 153 kHz, compensates for Doppler shifts in the echo and hears ultrasonic frequencies up to 200 kHz (Neuweiler et al., 1984). The organ of Corti was investigated qualitatively and quantitatively using the technique of semi-thin sectioning. Some complementary ultra-thin sections were also examined. Length, width and cross-sectional area of the basilar membrane, the tectorial membrane, the hair cells with their stereocilia and the organ of Corti were measured at equi-distant positions on the basilar membrane. The organ of Corti of H. bicolor is composed of elements similar to those found in the cochleae of other eutherian mammals studied. However, in H. bicolor some of these elements show species-specific differences when compared to auditorily unspecialized mammals. The most basal region of the cochlea is characterized by miniaturization and re-inforcement of macro- and micro-mechanically important elements. This is interpreted as an adaptation for hearing extremely high frequencies. Specialized structures as well as local maxima of 'normal' elements in the basal and middle cochlear region are associated with evaluation of the echos of emitted pure tones. Besides the basal specializations. Hipposideros also shows specializations in the apical, low frequency, region which can be correlated with passive acoustic orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-5955(91)90059-iDOI Listing

Publication Analysis

Top Keywords

organ corti
20
bat hipposideros
8
hipposideros bicolor
8
studied bicolor
8
basilar membrane
8
organ
5
bicolor
5
corti bat
4
bicolor bat
4
bicolor hipposideridae
4

Similar Publications

Resveratrol Reduces Cisplatin-induced Cochlear Hair Cell Pyroptosis by Inhibiting the mtROS/TXNIP/NLRP3 Pathway.

Comb Chem High Throughput Screen

January 2025

Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Cisplatin is an effective anti-cancer drug with limited clinical applications due to ototoxicity. Resveratrol, known for its antioxidant and anti-inflammatory properties, has been reported to mitigate these adverse effects, although the underlying mechanism remains under-researched.

Objective: This study aimed to investigate the effects and underlying mechanisms of resveratrol on cisplatin-induced ototoxicity.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells.

Adv Sci (Weinh)

January 2025

Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.

Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!