The bat Hipposideros bicolor (Hipposideridae, Microchiroptera) is the mammalian species with the highest upper limit of hearing in which the structure of the organ of Corti has been studied. H. bicolor emits pure tone echo-locating signals of 153 kHz, compensates for Doppler shifts in the echo and hears ultrasonic frequencies up to 200 kHz (Neuweiler et al., 1984). The organ of Corti was investigated qualitatively and quantitatively using the technique of semi-thin sectioning. Some complementary ultra-thin sections were also examined. Length, width and cross-sectional area of the basilar membrane, the tectorial membrane, the hair cells with their stereocilia and the organ of Corti were measured at equi-distant positions on the basilar membrane. The organ of Corti of H. bicolor is composed of elements similar to those found in the cochleae of other eutherian mammals studied. However, in H. bicolor some of these elements show species-specific differences when compared to auditorily unspecialized mammals. The most basal region of the cochlea is characterized by miniaturization and re-inforcement of macro- and micro-mechanically important elements. This is interpreted as an adaptation for hearing extremely high frequencies. Specialized structures as well as local maxima of 'normal' elements in the basal and middle cochlear region are associated with evaluation of the echos of emitted pure tones. Besides the basal specializations. Hipposideros also shows specializations in the apical, low frequency, region which can be correlated with passive acoustic orientation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-5955(91)90059-i | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Background: Cisplatin is an effective anti-cancer drug with limited clinical applications due to ototoxicity. Resveratrol, known for its antioxidant and anti-inflammatory properties, has been reported to mitigate these adverse effects, although the underlying mechanism remains under-researched.
Objective: This study aimed to investigate the effects and underlying mechanisms of resveratrol on cisplatin-induced ototoxicity.
Elife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
J Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!