Catalytic role of calix[4]hydroquinone in acetone-water proton exchange: a quantum chemical study of proton transfer via keto-enol tautomerism.

J Phys Chem A

Institute of Physical and Theoretical Chemistry, Goethe University, Max von Laue Str 7, 60438 Frankfurt/Main, Germany.

Published: October 2008

Calix[4]hydroquinone has recently attracted considerable interest since it forms stable tubular aggregates mediated solely by hydrogen bonding and pi-pi-stacking interactions. These aggregates trap specifically various small organic molecules and, in particular, catalyze the proton exchange of water with acetone. Using correlated quantum chemical methods, the mechanism of the observed proton exchange mediated by keto-enol tautomerism of acetone is investigated in detail. Starting with an investigation of keto-enol tautomerism of acetone-water clusters, it appears that four catalytic water molecules are optimal for the catalysis and that additional solvent water molecules lead to a decrease in efficiency. Analyses of the partial charges revealed a decrease of the polarization of the reactive hydrogen bonds due to the additional water molecules. As a next step, hydroquinone-acetone-water complexes were studied as models for the situation in the CHQ moieties. However, the computations revealed that the proton transfer reaction becomes less efficient when one catalytic water molecule is replaced by hydroquinone. Although concerted proton transfer via keto-enol tautomerism of acetone seems to be the predominant mechanism in supercritical water, it is no longer the rate-determining reaction mechanism for the catalyzed acetone-water proton exchange observed in tubular CHQ. Nevertheless, a key feature of the catalytic function of tubular CHQ has been identified to be the stiff hydrogen bonding network and the exclusion of additional solvent water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8049813DOI Listing

Publication Analysis

Top Keywords

proton exchange
16
keto-enol tautomerism
16
water molecules
16
proton transfer
12
acetone-water proton
8
quantum chemical
8
transfer keto-enol
8
hydrogen bonding
8
tautomerism acetone
8
catalytic water
8

Similar Publications

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.

View Article and Find Full Text PDF

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

High salinity in wastewater often hampers the performance of traditional adsorbents by disrupting electrostatic interactions and ion exchange processes, limiting their efficiency. This study addresses these challenges by investigating the salt-promoted adsorption of Cu ions onto amino-functionalized chloromethylated polystyrene (EDA@CMPS) millispheres. The adsorbent was synthesized by grafting ethylenediamine (EDA) onto CMPS, which significantly improved Cu adsorption, achieving nearly three times the capacity in saline solutions (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!