A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Quantitative analysis of multi-component gas mixture based on KPCA and SVR]. | LitMetric

[Quantitative analysis of multi-component gas mixture based on KPCA and SVR].

Guang Pu Xue Yu Guang Pu Fen Xi

School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: June 2008

In the present paper, the authors present a new quantitative analysis method of mid-infrared spectrum. The method combines the kernel principal component analysis (KPCA) technique with support vector regress machine (SVR) to createa quantitative analysis model of multi-component gas mixtures. Firstly, the spectra of multi-component gas mixtures samples were mapped nonlinearly into a high-dimensional feature space through the use of Gaussian kernels. And then, PCA technique was employed to compute efficiently the principal components in the high-dimensional feature spaces. After determining the optimal numbers of principal components, the extracted features (principal components) were used as the inputs of SVR to create the quantitative analysis model of seven-component gas mixtures. The prediction RMSE (phi x 10(-6))of seven-component gases of prediction set samples by use of KPCA-SVR model were respectively 124.37, 72.44, 136.51, 87.29, 153.01, 57.12, and 81.72, ten times less than that by use of SVR model. The elapsed time of modeling and prediction by using KPCA-SVR were respectively 46.59 (s) and 4.94 (s), which was consumedly less than 752.52 (s) and 26.21 (s) by using only SVR These results show that KPCA has an excellent ability of nonlinear feature extraction. It can make the most of the information of entire spectra range and effectively reduce noise and the dimension of the spectra. The KPCA combined with SVR can improve the model's analysis precision and cut the elapsed time of modeling and analysis. From our research and experiments, we conclude that KPCA-SVR is an effective new method for infrared spectroscopic quantitative analysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

quantitative analysis
16
multi-component gas
12
gas mixtures
12
principal components
12
analysis model
8
high-dimensional feature
8
elapsed time
8
time modeling
8
analysis
7
svr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!