X-ray atomic orbital (XAO) analysis revealed that at both temperatures the electrons are transferred from B 2p(x)(= p(y)) to Ce 5d and 4f orbitals. At 340 K 5d(j = 5/2)Gamma(8) orbitals are occupied partially, but 4f(j = 5/2)Gamma(8) orbitals are more populated than 4f(j = 5/2)Gamma(7) orbitals, in contrast to our observation at 430 K [Makita et al. (2007). Acta Cryst. B63, 683-692]. At 535 K the XAO analysis revealed clearly that the order of the energy levels of 4f(j = 5/2)Gamma(8) and Gamma(7) states reversed again and is the same as that at room temperature. It also limited the possible 5d configurations to three models among the nine possible ones. However, the XAO analysis could not decide which of the three models was the best with the present accuracy of the measurement. Two of them have partially and fully occupied 5d(j = 5/2)Gamma(7) orbitals and the remaining one has a fully occupied 5d(j = 3/2)Gamma(8) orbital. Since the lobes of 5d(j = 3/2)Gamma(8) or 5d(j = 5/2)Gamma(7) orbitals do not overlap with the 4f(j = 5/2)Gamma(8) orbitals as well as the 5d(j = 5/2)Gamma(8) orbitals, the order of the energy levels of the 4f(j = 5/2) orbitals became the same as that at room temperature. These results indicate that the crystal field varies with temperature due to the electron transfer from B 2p to Ce 5d orbitals. The difference densities after the spherical-atom refinement at the three temperatures clearly revealed the different combinations of 4f and 5d orbitals which are occupied. In the present study positive peaks due to the 4f electrons appear near the Ce nucleus and those due to 5d orbitals are found in the area outside the 4f peaks. Between the two areas there is a negative area distributed spherically at 340 K. The negative area produced by the contraction of 4f(j = 5/2)Gamma(8) orbitals seems to reduce the electron repulsion of the 5d(j = 5/2)Gamma(8) orbitals and helps the 4f(j = 5/2)Gamma(8) orbitals to remain as the ground state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0108768108026542 | DOI Listing |
Phys Med
January 2025
Department of Physics "A. Pontremoli", University of Milan & INFN sez. Milano, Milano, Italy. Electronic address:
Purpose: This work aims at investigating, via in-silico evaluations, the noise properties of an innovative scanning geometry in cone-beam CT (CBCT): eCT. This scanning geometry substitutes each of the projections in CBCT with a series of collimated projections acquired over an oscillating scanning trajectory. The analysis focused on the impact of the number of the projections per period (PP) on the noise characteristics.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFNat Comput Sci
January 2025
AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, China.
Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction.
View Article and Find Full Text PDFJ Neurosurg Pediatr
January 2025
1Neurotology Unit, Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow; and.
Objective: The objective of this study was to discuss the characteristics of intracranial extension in patients with juvenile nasopharyngeal angiofibroma (JNA) and propose and an algorithm for its management.
Methods: A retrospective chart review of all patients with JNA who underwent operations between January 2013 and January 2023 was done, and those cases with intracranial extension categorized as stage IIIb, IVa, and IVb according to the Andrews modification of the Fisch staging classification were included in the study. Data were collected about age at presentation, symptoms, radiological findings, routes of intracranial extension, therapeutic management, and follow-up.
Phys Chem Chem Phys
January 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported COLi (AM@COLi) complexes to enhance their NLO response. The AM-COLi complexes retained their structural features following interaction with the Group-IIIA elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!