Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation.

Physiol Meas

Departmento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile.

Published: October 2008

Measurement of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to changes in arterial blood pressure (ABP), has been performed with an index of autoregulation (ARI), related to the parameters of a second-order differential equation model, namely gain (K), damping factor (D) and time constant (T). Limitations of the ARI were addressed by increasing its numerical resolution and generalizing the parameter space. In 16 healthy subjects, recordings of ABP (Finapres) and CBF velocity (ultrasound Doppler) were performed at rest, before, during and after 5% CO(2) breathing, and for six repeated thigh cuff maneuvers. The unconstrained model produced lower predictive error (p < 0.001) than the original model. Unconstrained parameters (K'-D'-T') were significantly different from K-D-T but were still sensitive to different measurement conditions, such as the under-regulation induced by hypercapnia. The intra-subject variability of K' was significantly lower than that of the ARI and this parameter did not show the unexpected occurrences of zero values as observed with the ARI and the classical value of K. These results suggest that K' could be considered as a more stable and reliable index of dynamic autoregulation than ARI. Further studies are needed to validate this new index under different clinical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0967-3334/29/10/003DOI Listing

Publication Analysis

Top Keywords

dynamic cerebral
8
cerebral autoregulation
8
autoregulation ari
8
ari
5
unconstrained parameter
4
parameter estimation
4
estimation assessment
4
assessment dynamic
4
autoregulation
4
autoregulation measurement
4

Similar Publications

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.

Nat Commun

December 2024

Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.

The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!