The importance of core histones in the regulation of DNA function by chromatin is clear. However, little is known about the role of the linker histone. We investigated the role of H1 in Saccharomyces cerevisiae during extensive transcriptional reprogramming in stationary phase. Although the levels of linker histone Hho1p remained constant during growth to semiquiescence, there was a genome-wide increase in binding to chromatin. Hho1p was essential for compaction of chromatin in stationary phase, but not for general transcriptional repression. A clear, genome-wide anticorrelation was seen between the level of bound Hho1p and gene expression. Surprisingly, the rank order of gene activity was maintained even in the absence of Hho1p. Based on these findings, we suggest that linker histone Hho1p has a limited role in transcriptional regulation and that the dynamically exchanging linker histone may be evicted from chromatin by transcriptional activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567454 | PMC |
http://dx.doi.org/10.1073/pnas.0806337105 | DOI Listing |
Nat Commun
December 2024
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.
View Article and Find Full Text PDFPlant Cell
December 2024
Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA.
High carbohydrate availability promotes malic acid accumulation in fleshy fruits, but the underlying mechanism is not known. Here, we show that antisense repression of ALDOSE-6-PHOSPHATE REDUCTASE in apple (Malus domestica) decreases the concentrations of sorbitol and malate and the transcript levels of several genes involved in vacuolar malate transport, including the aluminum-activated malate transporter (ALMT) gene MdALMT9 (Ma1), the P-ATPase gene MdPH5, the MYB transcription factor gene MdMYB73, and the cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1, in fruit and leaves. We identified a linker histone H1 variant, MdH1.
View Article and Find Full Text PDFPlant Cell
December 2024
Assistant Features Editor, The Plant Cell, American Society of Plant Biologists.
J Med Chem
December 2024
Institute of Pharmaceutical und Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Histone deacetylase inhibitors (HDACi) are established anticancer drugs, especially in hematological cancers. This study aimed to design, synthesize, and evaluate a set of HDACi featuring a pentyloxyamide connecting unit linker region and substituted phenylthiazole cap groups. A structural optimization program yielded HDACi with nanomolar inhibitory activity against histone deacetylase class I/IIb enzymes.
View Article and Find Full Text PDFBiomolecules
November 2024
Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!