Size distributions of manure particles released under simulated rainfall.

J Environ Manage

USDA-ARS, Environmental Microbial Safety Laboratory, 10300 Baltimore Avenue, Building 173, Barc-East, Beltsville, MD 20705, USA.

Published: March 2009

Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the concurrent release of pathogens and manure particles during rainfall events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2008.08.001DOI Listing

Publication Analysis

Top Keywords

manure particles
20
size distributions
16
manure runoff
16
manure
13
particles released
12
simulated rainfall
12
particle size
12
leachate samples
12
distributions manure
8
particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!