A catalyst system based on a new biarylmonophosphine ligand (BrettPhos) that shows excellent reactivity for C-N cross-coupling reactions is reported. This catalyst system enables the use of aryl mesylates as a coupling partner in C-N bond-forming reactions. Additionally, the use of BrettPhos permits the highly selective monoarylation of an array of primary aliphatic amines and anilines at low catalyst loadings and with fast reaction times, including the first monoarylation of methylamine. Lastly, oxidative addition complexes of BrettPhos are included, which provide insight into the origin of reactivity for this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748321 | PMC |
http://dx.doi.org/10.1021/ja8055358 | DOI Listing |
Eur J Pharmacol
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
Multipalladium clusters possess peculiar structures and synergistic effects for reactivity and selectivity. Herein, -symmetric tripalladium clusters (, 0.5 mol %) afford C-regioselective SMCC of 2,4-dibromopyridine with phenylboronic acids or pinacol esters (C:C up to 98:1), in contrast to Pd(OAc) in ligand-free conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
A 1,1-hydroboration of alkynylgermanes with unique -Ge/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α-boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne-Ge π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a /Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling.
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China.
A novel and efficient method for the intermolecular hydroxysulfonylation of vinylarenes using sodium sulfinates has been achieved through aerobic copper catalysis. This transformation proceeded smoothly with green air as the terminal oxidant in the presence of Cu (I)/1,10-phenanthroline as an efficient catalytic system, leading to an array of β-hydroxysulfones in moderate to high yields. The significant advantages of this protocol are the mild reaction conditions, readily available starting materials, good functional-group compatibility, synthetic convenience, and practicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!