Introduction: Hepatitis B viral infection can create serious health problems, such as acute and chronic hepatitis, cirrhosis of liver and hepatocellular carcinoma. Athletes have bigger risk of hepatitis B infection due to frequent injuries with bleeding, their style of living (promiscuity), close contact with teammates, etc. The aim of this study was to investigate the immune response to hepatitis B vaccine among elite athletes, compared to corresponding control group of male subjects front general non-athlete population, and to test out reaction in relation to age.
Method: There were 21 elite football players and 30 control non-athlete males. After written consent, they all received three doses of hepatitis B vaccine (Euvax B, Sanofi Pasteur) during 6 months. Eight weeks later, their immune response (as anti-HBs antibody titre in serum) was assessed and statistical significance of the findings was tested. The level of immune response was also evaluated in different age clusters within test groups.
Results: None of the footballers was without response to the vaccine. One of the subjects from the control group did not develop it. The group of athletes was with better mean values of antibody titre (1626621 mIU/ml vs. 1568455 mIU/ml), but without statistical significance (t = 0.375: p > 0.05), and with a greater deal of subjects who developed very good immune response (titre over 2000 mIU/ml). Younger football players had better immune reaction than older (age 18-24, 1795560 mIU/ml, vs. age 25-29 years, 1597470 mIU/ml vs. age 30 and more, 1360904 mIU/ml), but without statistical importance (H = 1.593; p > 0.05).
Conclusion: Our study has shown that elite athletes respond very well to hepatitis B vaccination and have good immune response. Vaccination against hepatitis B of elite athletes is very important, because viral infection can seriously affect their health and stop their careers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2298/mpns0802055r | DOI Listing |
Plant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.
The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University Taoyuan 33305, Taiwan.
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.
View Article and Find Full Text PDFG-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.
View Article and Find Full Text PDFDespite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!