Role of metabotropic glutamate receptor 5 in the procholinergic effects of neuropsychotherapeutic compounds.

Synapse

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.

Published: December 2008

We investigated the participation of the metabotropic glutamate receptor type 5 (mGluR5) in mediating increases in cortical acetylcholine (ACh) efflux elicited by established or putative neuropsychotherapeutic compounds, using in vivo microdialysis in rats. The norepinephrine transporter inhibitor atomoxetine, the cannabinoid CB1 receptor antagonist SR141716A, the dopamine D1 receptor agonist dihydrexidine, and the atypical antipsychotic clozapine increased cortical ACh (by about 2-3 fold), whereas the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) by itself had no effect. The stimulatory effects of atomoxetine, SR141716A and dihydrexidine on cortical ACh were abolished by pretreatment with MPEP. MPEP also attenuated the stimulatory effect of clozapine on ACh efflux. Thus, mGluR5 activation appears to be involved in the procholinergic effects of compounds that exhibit therapeutic properties or potential in neuropsychiatry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20560DOI Listing

Publication Analysis

Top Keywords

metabotropic glutamate
8
glutamate receptor
8
procholinergic effects
8
neuropsychotherapeutic compounds
8
ach efflux
8
cortical ach
8
role metabotropic
4
receptor
4
receptor procholinergic
4
effects neuropsychotherapeutic
4

Similar Publications

Electroconvulsive therapy (ECT) is recognized as one of the most efficacious interventions for depression. However, it is associated with impairments in learning and memory functions. Ketamine has demonstrated potential in mitigating cognitive deficits.

View Article and Find Full Text PDF

Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

View Article and Find Full Text PDF

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

A-mediated synaptic glutamate dynamics and calcium dynamics in astrocytes associated with Alzheimer's disease.

Cogn Neurodyn

December 2024

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119 People's Republic of China.

The accumulation of amyloid peptide is assumed to be one of the main causes of Alzheimer's disease . There is increasing evidence that astrocytes are the primary targets of A. A can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel).

View Article and Find Full Text PDF

Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators.

ACS Pharmacol Transl Sci

December 2024

Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.

Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!