Genomics of industrial Aspergilli and comparison with toxigenic relatives.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Research Institute of Cell Engineering, National Institute of Advanced Industrial Science and Technologies, Central 6, 1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.

Published: September 2008

AI Article Synopsis

Article Abstract

Aspergillus oryzae has been used in Japanese fermentation industries for more than a thousand years. The species produces large amounts of various hydrolytic enzymes and has been successfully applied to modern biotechnology. The size of the A. oryzae genome (37.5 Mb) is very close to that of A. flavus and A. niger, and 20-30% larger than that of either A. nidulans or A. fumigatus. A. oryzae and A. flavus have exactly the same number of aspartic proteinase genes, of which each orthologous pair shares highly conserved amino acid sequences. Synteny analysis with A. fumigatus and A. nidulans showed that the A. oryzae genome has a mosaic structure consisting of syntenic and non-syntenic blocks. In the microorganisms to be compared, the density of the genes having homologs was obviously higher on the syntenic than on the non-syntenic blocks. Expression analysis by the DNA microarray supported the significantly lower expression of genes on the non-syntenic than on the syntenic blocks.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02652030802273114DOI Listing

Publication Analysis

Top Keywords

oryzae genome
8
syntenic non-syntenic
8
non-syntenic blocks
8
genomics industrial
4
industrial aspergilli
4
aspergilli comparison
4
comparison toxigenic
4
toxigenic relatives
4
relatives aspergillus
4
oryzae
4

Similar Publications

Filamentous plant pathogens pose a severe threat to food security. Current estimates suggest up to 23% yield losses to pre- and post-harvest diseases and these losses are projected to increase due to climate change (Singh et al. 2023; Chaloner et al.

View Article and Find Full Text PDF

Local co-circulation of multiple phylogenetic lineages is particularly likely for rapidly evolving pathogens in the current context of globalisation. When different phylogenetic lineages co-occur in the same fields, they may be simultaneously present in the same host plant (i.e.

View Article and Find Full Text PDF

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

Genome-wide association study of rice (Oryza sativa L.) inflorescence architecture.

Plant Sci

January 2025

Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.

Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait.

View Article and Find Full Text PDF

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!