Introduction: Solid tumors, such as neuroblastoma (NB), are associated with a heterogeneous cell environment. Multicellular tumor spheroid (MCTS) cultures have been shown to better mimic growth characteristics of in vivo solid tumors. Because tumor spheroid growth patterns may be quite different from standard two-dimensional culture systems, we sought to compare the protein expression profiles of two- and three-dimensional in vitro NB cultures, i.e., monolayers and MCTS.
Materials And Methods: Human NB cells were grown as both monolayers and spheres. Nuclear and cytosolic proteins were analyzed for differentially secreted proteins by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and selected polypeptides were identified by mass spectrometry (LC-MS/MS).
Results: Several metabolic (transketolase, triosephosphate isomerase, pyruvate kinase M1/M2, alpha enolase, and phosphoglycerate mutase-1), cell stress response (heat shock proteins (HSP) 90, 70, and 60; antioxidant, thioredoxin), cell structure (septin 2, adenyl cyclase-associated protein-1), tubulin beta-2 chain, actin, translationally controlled tumor protein and cofilin), signal transduction (peptidyl prolyl cis/trans isomerase A), biosynthetic (phosphoserine aminotransferase) and transport (cellular retinoic acid binding protein 1) polypeptides were overexpressed in spheroids. Several protein groups were differentially expressed between NB monolayers and spheroids.
Conclusion: The altered proteins among NB spheroids may represent an important link between monolayer cell cultures and in vivo experiments and thus a more ideal in vitro culture system for determining the precise three-dimensional microenvironment of NB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804865 | PMC |
http://dx.doi.org/10.1007/s00383-008-2245-2 | DOI Listing |
Cancer Lett
January 2025
Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. Electronic address:
The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis.
View Article and Find Full Text PDFComputerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.
View Article and Find Full Text PDFCancer Discov
January 2025
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
Deepening our understanding of neuro-cancer interactions can innovate brain tumor treatment. This mini review unfolds the most relevant and recent insights into the neural mechanisms contributing to brain tumor initiation, progression, and resistance, including synaptic connections between neurons and cancer cells, paracrine neuro-cancer signaling, and cancer cells' intrinsic neural properties. We explain the basic and clinical-translational relevance of these findings, identify unresolved questions and particularly interesting future research avenues, such as central nervous system neuro-immunooncology, and discuss the potential transferability to extracranial cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!