Pseudomonas aeruginosa is the most common cause of chronic and recurrent lung infections in patients with cystic fibrosis (CF) whose sputa contain copious quantities of P. aeruginosa toxin, pyocyanin. Pyocyanin triggers tissue damage mainly by its redox cycling and induction of reactive oxygen species (ROS). The reactions between reduced glutathione (GSH) and pyocyanin were observed using absorption spectra from spectrophotometry and the reaction products analysed by nuclear magnetic resonance imaging. Pyocyanin reacted with GSH non-enzymatically at 37 degrees C resulting in the production of red-brown products, spectophotometrically visible as a 480 nm maximum absorption peak after 24 h of incubation. The reaction was concentration-dependent on reduced glutathione but not on pyocyanin. Minimizing the accessibility of oxygen to the reaction decreased its rate. The anti-oxidant enzyme catalase circumvented the reaction. Proton-NMR analysis demonstrated the persistence of the original aromatic ring and the methyl-group of pyocyanin in the red-brown products. Anti-oxidant agents having thiol groups produced similar spectophotometrically visible peaks. The presence of a previously unidentified non-enzymatic GSH-dependent metabolic pathway for pyocyanin has thus been identified. The reaction between pyocyanin and GSH is concentration-, time-, and O(2)-dependent. The formation of H(2)O(2) as an intermediate and the thiol group in GSH seem to be important in this reaction.
Download full-text PDF |
Source |
---|
Chempluschem
January 2025
Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.
This review highlights how a Ir(III) and Ru(II) coordination complexes can change theirs cytotoxic activity by interacting with a biomolecules such as deoxyribonucleic acid (DNA), human albumins (HSA), nicotinamide adenine dinucleotide (NADH), and glutathione (GSH). We have selected biomolecules (DNA, NADH, GSH, and HSA) based on their significant biological roles and importance in cellular processes. Moreover, this review may provide useful information for the development of new half-sandwich Ir(III) and Ru(II) complexes with desired properties and relevant biological activities.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Pudong, Shanghai-201399, China.
Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
Objectives: Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q (CoQ) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats.
Materials And Methods: Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr.
Heliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade Estadual do Ceará Instituto Superior de Ciências Biomédicas Laboratório de Fisiologia Endócrina e Metabolismo FortalezaCE Brasil Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil.
Objective: This study aimed to investigate the redox balance in subcutaneous and retroperitoneal fat pads of male and female Wistar rats.
Materials And Methods: The study analyzed the activity and gene expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, along with the production of NADPH oxidases dependent on HO and gene expression of NOX1, NOX2, and NOX4.
Results: The retroperitoneal fat pad in males compared with females had greater NOX2 and NOX4 expression, along with higher superoxide dismutase activity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!