The feasibility of using nonintegrating lentiviral vectors has been demonstrated by recent studies showing their ability to maintain transgene expression both in vitro and in vivo. Furthermore, human immunodeficiency virus-1 (HIV-1) vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date, a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. In this study, we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector's U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587457 | PMC |
http://dx.doi.org/10.1038/mt.2008.199 | DOI Listing |
Stem Cell Res Ther
November 2024
Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.
Background: In vitro models for drug testing constitute a valuable and simplified in-vivo-like assay to better comprehend the biological drugs effect. In particular, the combination of neuronal cultures with Micro-Electrode Arrays (MEAs) constitutes a reliable system to investigate the effect of drugs aimed at manipulating the neural activity and causing controlled changes in the electrophysiology. While chemical modulation in rodents' models has been extensively studied in the literature, electrophysiological variations caused by chemical modulation on neuronal networks derived from human induced pluripotent stem cells (hiPSCs) still lack a thorough characterization.
View Article and Find Full Text PDFJ Adv Res
July 2024
Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China. Electronic address:
Introduction: Aberrant angiogenesis plays an important part in the development of a variety of human diseases including proliferative diabetic retinopathy, with which there are still numerous patients remaining a therapeutically challenging condition. Prime editing (PE) is a versatile gene editing approach, which offers a novel opportunity to genetically correct challenging disorders.
Objectives: The goal of this study was to create a dominant-negative (DN) vascular endothelial growth factor receptor (VEGFR) 2 by editing genomic DNA with an advanced PE system to block aberrant retinal angiogenesis in a mouse model of oxygen-induced retinopathy.
Cells
May 2024
Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic.
J Hepatol
January 2024
Department of Infectious Disease, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.. Electronic address:
Background & Aims: Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers.
Methods: Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection.
Genes (Basel)
September 2023
Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece.
β-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating and non-coding for viral proteins, may be helpful in generating valid alternatives to viral vectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!