sCD40L is a proatherogenic cytokine, part of the tumor necrosis factor (TNF) superfamily and consistently associated with obesity, diabetes, and increased cardiovascular risk. Although the role of sCD40L in the onset/progression of cardiovascular complications of dysmetabolic diseases may be modulated by acute and/or chronic fluctuations of plasma insulin and glucose, very little has been done to clarify this interaction. The kinetic profile of sCD40L (and, in an exploratory manner, of several immunomodulatory factors), were measured during hyperglycemia and euglycemic-hyperinsulinemia in a group of 10 healthy young males (26.8 +/- 1.4 years). After an overnight fast, intravenous (iv) catheters were placed in antecubital veins of both arms for blood drawing and dextrose/insulin iv infusions. Procedures lasted 240 minutes including baseline (t = 0-60), hyperglycemia (t = 60-150; plasma glucose approximately 220 mg/dL via iv dextrose infusion), and euglycemic-hyperinsulinemia (t = 150-240; glucose infusion continued to clamp glycemic levels between 80 and 110 mg/dL; constant insulin infusion at 1.5 mU/kg/minute).Plasma for cytokine assays was sampled at 12 separate time-points. Plasma levels of sCD40L were significantly reduced (P < 0.01) during hyperglycemia and euglycemic-hyperinsulinemia, paralleling the kinetic profiles of free fatty acids and ketone bodies. This pattern was also observed in other immunomodulatory factors (notably cortisol and epidermal growth factor), while (interleukin [IL]-1alpha, IL-4, IL-6, IL-9, IL-10, TNF-alpha, Eotaxin) did not change significantly. Significant reductions of the proatherogenic cytokine sCD40L were observed during endogenous and exogenous hyperinsulinemia, independent of prevailing glucose concentration, in young healthy males. Our data suggest a mechanism by which correct insulin action may exert a beneficial protective role against inflammation, independent of its immediate glucose-lowering effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060966 | PMC |
http://dx.doi.org/10.2310/JIM.0b013e31818914e4 | DOI Listing |
J Neurophysiol
May 2022
Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Brain mechanisms underlying the association of diabetes metabolic disorders-hyperglycemia and insulin resistance-with cognitive impairment are unknown. Myoinositol is a brain metabolite involved in cell osmotic balance, membrane phospholipid turnover, and second messenger neurotransmission, which affect brain function. Increased brain myoinositol and altered functional connectivity have been found in diabetes, mild cognitive impairment, and Alzheimer's disease, but the independent effects of plasma glucose and insulin on brain myoinositol and function are not characterized.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2020
Division of Endocrinology, Department of Medicine, Department of Pharmacology , University of Virginia, School of Medicine, Charlottesville, VA 22908; Department of Molecular and Clinical Medicine (, United States.
Diabetes mellitus accelerates vascular disease through multiple biochemical pathways driven by hyperglycemia, with insulin resistance and/or hyperinsulinemia also contributing. Persons with diabetes mellitus experience premature large vessel and microvascular disease when compared to normoglycemic controls. Currently there is a paucity of clinical data identifying how acutely the vasculature responds to hyperglycemia and whether other physiologic factors (e.
View Article and Find Full Text PDFEBioMedicine
March 2017
Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Faculty of Health, Aarhus University, Aarhus, Denmark; Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA. Electronic address:
Plasma concentrations of pro-Atrial natriuretic peptide, proANP, are decreased in obesity and diabetes. Decreased proANP concentrations have also been noted after meal intake, and recently, a glucose-mediated regulation of ANP gene expression was reported. Hence, we evaluated the effects of insulin, glucagon and glucose on plasma proANP in a series of observational and experimental studies.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2013
Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark; and.
Diabetic retinopathy is accompanied by disturbances in retinal blood flow, which is assumed to be related to the diabetic metabolic dysregulation. It has previously been shown that normoinsulinemic hyperglycemia has no effect on the diameter of retinal arterioles at rest and during an increase in the arterial blood pressure induced by isometric exercise. However, the influence of hyperinsulinemia on this response has not been studied in detail.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
June 2013
Medical Research Laboratories, Institute of Clinical Medicine, Aarhus University, Aarhus Denmark;
Ghrelin is a gut-derived peptide and an endogenous ligand for the ghrelin receptor. Intravenous infusion of ghrelin induces insulin resistance and hyperglycemia and increases circulating levels of nonesterified free fatty acids. Our objective was to investigate whether the metabolic effects are mediated directly by ghrelin in skeletal muscle and adipose (peripheral and central) tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!