Glucose is a major source of energy for living organisms, and its transport in vertebrates is a universally conserved property. Of all cell lineages, human erythrocytes express the highest level of the Glut1 glucose transporter with more than 200,000 molecules per cell. However, we recently reported that erythrocyte Glut1 expression is a specific trait of vitamin C-deficient mammalian species, comprising only higher primates, guinea pigs, and fruit bats. Here, we show that in all other tested mammalian species, Glut1 was transiently expressed in erythrocytes during the neonatal period. Glut1 was up-regulated during the erythroblast stage of erythroid differentiation and was present on the vast majority of murine red blood cells (RBCs) at birth. Notably though, Glut1 was not induced in adult mice undergoing anemia-induced erythropoiesis, and under these conditions, the up-regulation of a distinct transporter, Glut4, was responsible for an increased glucose transport. Sp3 and Sp1 transcriptions factors have been proposed to regulate Glut1 transcription, and we find that the concomitant repression of Glut1 and induction of Glut4 was associated with a significantly augmented Sp3/Sp1 ratio. Glucose transporter expression patterns in mice and human erythrocytes are therefore distinct. In mice, there is a postnatal switch from Glut1 to Glut4, with Glut4 further up-regulated under anemic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2008-05-159269DOI Listing

Publication Analysis

Top Keywords

glut1
9
glut1 glut4
8
human erythrocytes
8
glucose transporter
8
mammalian species
8
glucose
5
glut4 glucose
4
glucose transporters
4
transporters differentially
4
differentially expressed
4

Similar Publications

Hyaluronic acid promotes hepatocellular carcinoma proliferation by upregulating CD44 expression and enhancing glucose metabolism flux.

Int Immunopharmacol

January 2025

Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China. Electronic address:

Hepatocellular carcinoma (HCC), known for its high malignancy, exhibits a critical feature in its progression through the alteration of metabolic pathways. Our study initially observed an increase in hyaluronic acid (HA) secretion by HCC cells through ELISA analysis. Further protein-protein interaction (PPI) network analysis highlighted CD44 and HAS2 as critical nodes, suggesting their pivotal roles in HA metabolism.

View Article and Find Full Text PDF

pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer.

Bioorg Chem

January 2025

Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland. Electronic address:

Novel pH-sensitive polymeric photosensitizer carriers from the phthalocyanine (Pc) group were investigated as potential photodynamic therapy drugs for the treatment of breast cancer. Their high antiproliferative activity was confirmed by photocytotoxicity studies, which indicated their high efficacy and specificity toward the SK-BR-3 cell line. Importantly, the Pcs encapsulated in the polymeric nanoparticle (NP) carrier exhibited a much better penetration into the acidic environment of tumor cells than their free form.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!