Redirecting the splicing machinery through the hybridization of high affinity, RNase H- incompetent oligonucleotide analogs such as phosphoramidate morpholino oligonucleotides (PMO) might lead to important clinical applications. Chemical conjugation of PMO to arginine-rich cell penetrating peptides (CPP) such as (R-Ahx-R)(4) (with Ahx standing for 6-aminohexanoic acid) leads to sequence-specific splicing correction in the absence of endosomolytic agents in cell culture at variance with most conventional CPPs. Importantly, (R-Ahx-R)(4)-PMO conjugates are effective in mouse models of various viral infections and Duchenne muscular dystrophy. Unfortunately, active doses in some applications might be close to cytotoxic ones thus presenting challenge for systemic administration of the conjugates in those clinical settings. Structure-activity relationship studies have thus been undertaken to unravel CPP structural features important for the efficient nuclear delivery of the conjugated PMO and limiting steps in their internalization pathway. Affinity for heparin (taken as a model heparan sulfate), hydrophobicity, cellular uptake, intracellular distribution and splicing correction have been monitored. Spacing between the charges, hydrophobicity of the linker between the Arg-groups and Arg-stereochemistry influence splicing correction efficiency. A significant correlation between splicing correction efficiency, affinity for heparin and ability to destabilize model synthetic vesicles has been observed but no correlation with cellular uptake has been found. Efforts will have to focus on endosomal escape since it appears to remain the limiting factor for the delivery of these splice-redirecting ON analogs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582615PMC
http://dx.doi.org/10.1093/nar/gkn541DOI Listing

Publication Analysis

Top Keywords

splicing correction
16
affinity heparin
8
cellular uptake
8
correction efficiency
8
splicing
5
delivery steric
4
steric block
4
block morpholino
4
morpholino oligomers
4
oligomers r-x-r4
4

Similar Publications

It is becoming increasingly evident that diabetic vascular complications seriously threaten human health. The most prevalent microvascular complications include kidney disease, retinal disease, cardiovascular diseases and amputation. Conventional treatments can only relieve the progression of the diseases, and is no longer appropriate for the long-term management of diabetic patients.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.

View Article and Find Full Text PDF

Myotonia congenita, both in a dominant (Thomsen disease) and recessive form (Becker disease), is caused by molecular defects in that encodes the major skeletal muscle chloride channel, ClC-1. This channel is important for the normal repolarization of muscle action potentials and consequent relaxation of the muscle, and its dysfunction leads to impaired muscle relaxation after voluntary or evoked contraction and muscle stiffness. More than 300 pathogenic variants have been found in association with congenital myotonia, inherited as recessive or dominant traits (with complete or incomplete penetrance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!