Kiss-and-run exocytosis and fusion pores of secretory vesicles in human beta-cells.

Pflugers Arch

Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, HRIF East, Rm 6-126, Edmonton, AB T6G 2E1, Canada.

Published: April 2009

Exocytosis of secretory vesicles results in the release of insulin from pancreatic beta-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human beta-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 microM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human beta-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-008-0588-0DOI Listing

Publication Analysis

Top Keywords

secretory vesicles
20
fusion pores
12
human beta-cells
12
exocytosis single
8
single secretory
8
unitary capacitance
8
capacitance steps
8
fusion pore
8
fusion
5
secretory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!