Human genetic approaches to diseases of lymphocyte activation.

Immunol Res

Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases. National Institutes of Health, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD 20892-1892, USA.

Published: June 2009

Our laboratory focuses on the study of the molecular regulation of T lymphocyte homeostasis, particularly as it relates to immunological tolerance, apoptosis, and autoimmune diseases. Through intense molecular research on the regulation of lymphocyte fate, the Fas receptor and other tumor necrosis factor receptors as well as their ligands have emerged as key regulators of T lymphocyte apoptosis. We are studying genetic abnormalities of this death pathway, particularly in the context of autoimmune lymphoproliferative syndrome (ALPS) and other non-ALPS conditions affecting lymphocyte homeostasis. These studies have led to further investigations of the regulation of the NF-kappaB signaling pathway, the molecular basis for programed cell death and viral cytopathicity, mechanisms of autoimmunity, and the regulation of mature T-cell tolerance. Our investigations promise to provide insight into the molecular mechanisms behind the regulation of immune response and contribute to the development of novel diagnostic and treatment methods for autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415228PMC
http://dx.doi.org/10.1007/s12026-008-8045-xDOI Listing

Publication Analysis

Top Keywords

molecular regulation
8
regulation lymphocyte
8
lymphocyte homeostasis
8
autoimmune diseases
8
lymphocyte
5
regulation
5
human genetic
4
genetic approaches
4
approaches diseases
4
diseases lymphocyte
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!