Analysis of open dielectric waveguides using the finite-element penalty method.

Opt Lett

Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

Published: September 2008

This paper analyzes open dielectric waveguides using the vector finite-element method and boundary integral equations derived from the second Green's theorem. This finite-element formulation, together with the boundary operator, is solved using a penalty function method. Comparison with previously published results shows good agreement for the analysis of the rectangular dielectric waveguide.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.33.002068DOI Listing

Publication Analysis

Top Keywords

open dielectric
8
dielectric waveguides
8
analysis open
4
waveguides finite-element
4
finite-element penalty
4
penalty method
4
method paper
4
paper analyzes
4
analyzes open
4
waveguides vector
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

Cd(Se,Te) photovoltaics (PV) are the most widely deployed thin-film solar technology globally, yet continued efficiency improvements are stymied by challenges at the device hole contacts. The inclusion of solution-processed oxide layers such as AlGaO in the contact stack has yielded improved device open-circuit voltages () and fill factors (FF). However, contradictory mechanisms by which these layers improve the device properties have been proposed by the research community.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!