Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor.

Oncogene

Department of Neurosurgery, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.

Published: December 2008

The ephrinA1 ligand exerts antioncogenic effects in tumor cells through activation and downregulation of the EphA2 receptor and has been described as a membrane-anchored protein requiring clustering for function. However, while investigating the ephrinA1/EphA2 system in the pathobiology of glioblastoma multiforme (GBM), we uncovered that ephrinA1 is released from GBM and breast adenocarcinoma cells as a soluble, monomeric protein and is a functional form of the ligand in this state. Conditioned media containing a soluble monomer of ephrinA1 caused EphA2 internalization and downregulation, dramatic alteration of cell morphology and suppression of the Ras-MAPK pathway. Moreover, soluble monomeric ephrinA1 was functional in a physiological context, eliciting collapse of embryonic neuronal growth cones. We also found that ephrinA1 is cleaved from the plasma membrane of GBM cells, an event which involves the action of a metalloprotease. Thus, the ephrinA1 ligand can, indeed, function as a soluble monomer and may act in a paracrine manner on the EphA2 receptor without the need for juxtacrine interactions. These findings have important implications for further deciphering the function of these proteins in pathology and physiology, as well as for the design of ephrinA1-based EphA2-targeted antitumor therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683835PMC
http://dx.doi.org/10.1038/onc.2008.328DOI Listing

Publication Analysis

Top Keywords

soluble monomeric
12
epha2 receptor
12
monomeric ephrina1
8
ephrina1 released
8
tumor cells
8
ephrina1 ligand
8
soluble monomer
8
ephrina1
7
soluble
5
released tumor
4

Similar Publications

The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology.

Parkinsonism Relat Disord

December 2024

Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA.

The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined.

View Article and Find Full Text PDF

In this study, the absolute electrostatic charge of myofibrillar protein (MP) was substantially increased by protein-glutaminase (PG) treatment, which was a critical step for achieving the dissociation and solubility of MP under low salt condition. The PG-treated MP exhibited the capacity to form thermo-reversible gels that could be melted through heating and subsequently reformed into a stable gel structure upon refrigeration. The results of SDS-PAGE further revealed that the levels of soluble monomeric myosin and actin in the supernatant of deamidated MP (DMP) gels were markedly elevated, and confirmed the increased formation of intermolecular disulfide bond between myosin and actin.

View Article and Find Full Text PDF

Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms.

Colloids Surf B Biointerfaces

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.

View Article and Find Full Text PDF

Enhancing vaccine half-life as a novel strategy for improving immune response durability of subunit vaccines.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored.

View Article and Find Full Text PDF

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!