Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although previous in vitro studies predicted that CCN5/WISP-2 may act as an anti-invasive gene in breast cancer, the distribution pattern of CCN5 in breast cancer samples is conflicting. Thus, we systematically investigated the CCN5 expression profile in noninvasive and invasive breast tumor samples and its functional relevance in breast cancer progression. The studies showed that CCN5 expression is biphasic, such that in normal samples CCN5 expression is undetectable, whereas its expression is markedly increased in noninvasive breast lesions, including atypical ductal hyperplasia and ductal carcinoma in situ. Further, CCN5 mRNA and protein levels are significantly reduced as the cancer progresses from a noninvasive to invasive type. Additionally, we showed that CCN5 mRNA and protein level was almost undetectable in poorly differentiated cancers compared with the moderately or well-differentiated samples and its expression inversely correlated with lymph node positivity. The result was further supported by evaluating the RNA expression profile in microdissected sections using real-time PCR analysis. Therefore, our data suggest a protective function of CCN5 in noninvasive breast tumor cells. This hypothesis was further supported by our in vitro studies illuminating that CCN5 is a negative regulator of migration and invasion of breast cancer cells, and these events could be regulated by CCN5 through the modulation of the expression of genes essential for an invasive front. These include Snail-E-cadherin signaling and matrix metalloproteinase (MMP)-9 and MMP-2. Collectively, these studies suggest that the protective effect of CCN5 in breast cancer progression may have important therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-08-1461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!