N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme which hydrolyzes bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. NAAA shows acidic pH optimum in terms of both catalytic activity and maturation by specific proteolysis. However, molecular mechanism involved in this characteristic pH dependency remained unclear. Here we report the important role of Glu-195 of human NAAA by analyzing the mutants E195A and E195Q overexpressed in human embryonic kidney 293 cells. Concanamycin A, raising lysosomal pH, inhibited maturation of the wild-type, but not of the Glu-195 mutants. The purified precursors of the mutants, but not the wild-type, were proteolytically cleaved at pH 7.4 during 24-h incubation. Furthermore, when assayed for N-palmitoylethanolamine-hydrolyzing activity at different pH, the mutants did not exhibit a sharp peak around pH 4.5 in the pH-dependent activity profile. Mutants of other seven glutamic acid residues did not show such an abnormality. These results suggested a unique role of Glu-195 in the pH-dependent activity and proteolytic maturation. Moreover, Arg-142, Asp-145, and Asn-287 as well as previously identified Cys-126 were shown to be essential for the proteolytic activation. Since these residues were predicted to be catalytically important, the results strongly suggested that the proteolysis occurs through an autocatalytic mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2008.08.004 | DOI Listing |
J Fluoresc
January 2025
Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia.
In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.
View Article and Find Full Text PDFNat Plants
January 2025
Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
Parthenocarpy is a pivotal trait that enhances the yield and quality of fruit crops by enabling the development of seedless fruits. Here we unveil a molecular framework for the regulation and domestication of parthenocarpy in cucumber (Cucumis sativus L.).
View Article and Find Full Text PDFNat Commun
January 2025
Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.
Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidade Federal de Pernambuco Centro de Biociencias, Centro de Biociências, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife - PE, 50670-901, 50670-901, Recife, BRAZIL.
Leishmaniasis is a neglected disease caused by parasites of the genus Leishmania sp. that causes approximately 1 million cases and 650,000 deaths annually worldwide. Its treatment has several limitations mainly due to high toxicity and clinical resistance, and the search for alternatives is highly desirable.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!