Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Saccharomyces cerevisiae (baker's yeast) is an excellent model for understanding fundamental biological mechanisms that are conserved in Nature and that have an impact on human disease. The metal iron is a redox-active cofactor that plays critical biochemical roles in a broad range of functions, including oxygen transport, mitochondrial oxidative phosphorylation, chromatin remodelling, intermediary metabolism and signalling. Although iron deficiency is the most common nutritional disorder on the planet, little is known about the metabolic adjustments that cells undergo in response to iron deficit and the regulatory mechanisms that allow these adaptive responses. In the present article, we summarize recent work on genome-wide metabolic reprogramming in response to iron deficiency, mediated by specific mRNA degradation mechanisms that allow S. cerevisiae cells to adapt to iron deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0361088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!