The oculoauriculovertebral anomaly (OAV) or Goldenhar syndrome is a malformation complex that has been described in several chromosomal rearrangements. Among them a deletion of the terminal 5p has recurred in seven previous patients. We wish to report on an additional such patient in order to reinforce the significance of this genomic region in the cause of at least a subgroup of OAV cases. Future studies, particularly in the OAV patients with a lateral facial cleft, might define one genetic background of the disorder. Our patient had a complex translocation chromosome 45,XX, inv(2) (q32q37)mat, dic(5;21) (p15.3;q22.3)dn, resulting in a terminal 5p deletion, a terminal deletion of 21q demonstrated by FISH studies, and a duplication of 21q22.11-q22.12 documented by molecular karyotyping. In addition to OAV she developed myelodysplasia treated with bone marrow transplantation. We discuss her clinical findings with reference to her karyotype findings and review the patients with OAV and a terminal deletion of 5p.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.32479DOI Listing

Publication Analysis

Top Keywords

terminal deletion
12
oculoauriculovertebral anomaly
8
deletion terminal
8
oav
5
evidence relationship
4
relationship 5p15
4
5p15 chromosome
4
chromosome region
4
region oculoauriculovertebral
4
anomaly oculoauriculovertebral
4

Similar Publications

Genomic Differences and Mutations in Epidemic Orf Virus and Vaccine Strains: Implications for Improving Orf Virus Vaccines.

Vet Sci

December 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China.

Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Regulation mechanism of the long-chain -alkane monooxygenase gene in RAG-1.

Appl Environ Microbiol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, Tianjin, China.

Unlabelled: As toxic pollutants, -alkanes are pervasively distributed in most environmental matrices. Although the alkane monooxygenase AlmA plays a critical role in the metabolic pathway of solid long-chain -alkanes (≥C) that are extremely difficult to degrade, the mechanism regulating this process remains unclear. Here, we characterized the function of AlmA in RAG-1, which was mainly involved in the degradation of long-chain -alkanes (C-C), among which, -C induced the promoter activity most.

View Article and Find Full Text PDF

Trifunctional protein deficiency (TFP) is a disorder of fatty acid beta-oxidation associated with metabolic, cardiac, and liver dysfunction in severe forms. We present two siblings diagnosed by newborn screening and confirmed by biochemical testing at birth. Their clinical course was complicated by recurrent rhabdomyolysis, retinopathy, and hypoparathyroidism.

View Article and Find Full Text PDF

A negatively charged region within carboxy-terminal domain maintains proper CTCF DNA binding.

iScience

December 2024

Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.

As an essential regulator of higher-order chromatin structures, CCCTC-binding factor (CTCF) is a highly conserved protein with a central DNA-binding domain of 11 tandem zinc fingers (ZFs), which are flanked by amino (N-) and carboxy (C-) terminal domains of intrinsically disordered regions. Here we report that CRISPR deletion of the entire C-terminal domain of alternating charge blocks decreases CTCF DNA binding but deletion of the C-terminal fragment of 116 amino acids results in increased CTCF DNA binding and aberrant gene regulation. Through a series of genetic targeting experiments, in conjunction with electrophoretic mobility shift assay (EMSA), circularized chromosome conformation capture (4C), qPCR, chromatin immunoprecipitation with sequencing (ChIP-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq), we uncovered a negatively charged region (NCR) responsible for weakening CTCF DNA binding and chromatin accessibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!