Regulation of expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis in Corynebacterium glutamicum was studied. We applied DNA affinity beads to isolate proteins binding to the promoter region of the gapA gene and obtained SugR, which has been shown to be a repressor of pts genes involved in sugar transport system. The results of electrophoretic mobility shift assays revealed that SugR specifically bound to the gapA promoter and the consensus sequence TGTTTG in the promoter region was required for its binding. We examined expression of the gapA gene in a sugR deletion mutant. Effect of mutation in the SugR binding site on gapA-lacZ fusion expression was also examined. These assays revealed that SugR acts as a negative transcriptional regulator of the gapA gene in the absence of sugar, and repression by SugR is alleviated in the presence of sugar, i.e., fructose and sucrose. Fructose-1-phosphate and fructose-1,6-bisphosphate revealed negative effects on binding of SugR to the gapA promoter, indicating that the sugar metabolites are involved in the derepression of gapA expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-008-1682-0 | DOI Listing |
Int J Mol Sci
January 2025
Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS , Ithaca, United States.
Int J Mol Sci
December 2024
Center for Molecular and Cellular Biology, 121205 Moscow, Russia.
Antibiotic resistance has been and remains a major problem in our society. The main solution to this problem is to search and study the mechanisms of antibiotic action. Many groups of secondary metabolites, including antimicrobial ones, are produced by the phylum.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
December 2024
Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
Three fluorescent bacterial strains, K1, K13 and K18, were obtained from watermelon () foliage symptomatic of bacterial leaf spot of cucurbits in Florida. The strains underwent phenotypic characterization, including LOPAT (levan production, oxidase activity, pectolytic activity on potato, arginine dihydrolase production and hypersensitive response (HR) on both tobacco and tomato) and pathogenicity testing on watermelon and squash seedlings. Whole-genome sequencing of the isolates was performed, and multi-locus sequence analysis (MLSA) utilizing housekeeping genes , , and placed the isolates into two distinct clades within the genus.
View Article and Find Full Text PDFPLoS One
November 2024
Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh.
Breast cancer (BC) is yet a significant global health challenge across various populations including Ghana, though several studies on host-genome associated with BC have been investigated molecular mechanisms of BC development and progression, and candidate therapeutic agents. However, a little attention has been given on microbial genome in this regard, although alterations in microbiota and epigenetic modifications are recognized as substantial risk factors for BC. This study focused on identifying bacterial key genes (bKGs) associated with BC infections in the Ghanaian population and exploring potential drug molecules by targeting these bKGs through in silico analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!