Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586569 | PMC |
http://dx.doi.org/10.1529/biophysj.107.114587 | DOI Listing |
J Phys Chem B
December 2024
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ (KF) peptide.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFCell Rep Phys Sci
November 2024
Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE.
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!