Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate.

Am J Physiol Heart Circ Physiol

Department of Surgery, University of California San Franciso-East Bay, Alameda County Medical Center, Oakland, CA 94602, USA.

Published: November 2008

Ischemia-reperfusion (IR) injury is a major insult to postcapillary venules. We hypothesized that IR increases postcapillary venular hydraulic conductivity and that IR-mediated changes in hydraulic conductivity result from temporally and mechanistically separate processes. A microcannulation technique was used to determine hydraulic conductivity (Lp) in rat mesenteric postcapillary venules serially throughout ischemia (45 min) and reperfusion (5 h) induced by superior mesenteric artery occlusion and release. Mesenteric IR resulted in a biphasic increase in Lp. White blood cell (WBC) adhesion slowly increased with maximal adhesion corresponding to the second peak (P < 0.005). After IR, tissue was harvested for RT-PCR analysis of ICAM-1, E-selectin, and P-selectin mRNA. Intercellular adhesion molecule-1 (ICAM-1) mRNA in the gut showed the most significant upregulation. Quantitative real-time PCR revealed that ICAM-1 mRNA was upregulated 60-fold in the gut. An ICAM-1 antibody was therefore used to determine the effect of WBC adhesion on Lp during IR. ICAM-1 inhibition attenuated Lp during the first peak and completely blocked the second peak (P < 0.005). When rats were fed a tungsten diet to inhibit xanthine oxidase and then underwent IR, Lp was dramatically attenuated during the first peak and mildly decreased the second peak (P < 0.005). Inhibition of xanthine oxidase by oxypurinol decreased Lp during IR by over 60% (P < 0.002). Tempol, a superoxide dismutase mimetic, decreased Lp during IR by over 30% (P < 0.01). We conclude that IR induces a biphasic increase in postcapillary hydraulic conductivity. Reactive oxygen species impact both the first transient peak and the sustained second peak. However, the second peak is also dependent on WBC-endothelial cell adhesion. These serial measurements of postcapillary hydraulic conductivity may lead the way for optimal timing of pharmaceutical therapies in IR injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614570PMC
http://dx.doi.org/10.1152/ajpheart.00419.2008DOI Listing

Publication Analysis

Top Keywords

hydraulic conductivity
24
second peak
20
peak 0005
12
ischemia-reperfusion injury
8
temporally mechanistically
8
mechanistically separate
8
postcapillary venules
8
biphasic increase
8
wbc adhesion
8
peak
8

Similar Publications

The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.

View Article and Find Full Text PDF

Construction machines, for example cranes, excavators, or bulldozers, are widely diffused systems operating outdoors in harsh and dangerous environments, such as building sites, forests, and mines. Typically, construction machines require the on-site presence of highly skilled users to manage the complexity of their control and the high power of hydraulic actuation. Construction machines could benefit from recent developments of robot avatar technology that has demonstrated the viability of remotizing human physical activities, leveraging on intuitive interfaces and controls.

View Article and Find Full Text PDF

Offshore low-permeability reservoirs are mainly composed of complex fault-block structures with poor physical properties, which makes establishing an effective displacement relationship particularly challenging. Hydraulic fracturing assisted oil displacement (HFAD) can effectively increase the oil production of a single well by creating fractures to replenish the producing energy. In this study, the Khristianovich-Geertsma-de Klerk (KGD) model is used to calculate the propagation of vertical fractures, and the flow tube method is used to calculate the two-phase oil-water flow in filtration and seepage.

View Article and Find Full Text PDF

Evolution of groundwater genesis in Central Ganga Plain (CGP) is scrutinized with due consideration of hydrochemical and hydrodynamic environment within Quaternary alluviums. Wide variation in hydrochemical facies in CGP indicates a dynamic hydro-geochemical environment influenced from the seasonal rainfall, return flows, canal seepages, and anthropogenic activities. The Ca-HCO facies retaining meteoric nature is characterized by shallow water levels, high recharge rate, high hydraulic conductivity, low salinity and trace elemental load.

View Article and Find Full Text PDF

Redistribution of dissolved inorganic nitrogen loading and transport in global rivers via surface water regulation.

Sci Total Environ

January 2025

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

Surface water (SW) regulation, including reservoir regulation and surface water use, alters the soil-river hydrological processes and then influences the dissolved inorganic nitrogen (DIN) transport from rivers to oceans. However, global response of the DIN transfer to such human activity has not been well investigated. Therefore, in this study, we have taken advantage of a recently-developed land surface model to show the effects of SW regulation on DIN loading and transport in global major rivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!