Cyclin-dependent kinases (CDKs) and their regulators show frequent abnormalities in tumors. Ten low molecular weight pharmacologic inhibitors of CDKs are currently in clinical trials against various cancers, including the 2,6,9-trisubstituted purine (R)-roscovitine (CYC202/Seliciclib). We here report the characterization of N-&-N1, a bioisoster of roscovitine displaying improved antitumoral properties. N-&-N1 shows exquisite selectivity for CDKs, with 2- to 3-fold enhanced potency compared with (R)-roscovitine. Inhibition of retinoblastoma protein phosphorylation and RNA polymerase II Ser2 phosphorylation in neuroblastoma SH-SY5Y cells exposed to N-&-N1 indicates that N-&-N1 is able to inhibit CDKs in a cellular context. N-&-N1 also down-regulates the expression of RNA polymerase. Cocrystal structures of N-&-N1 and (R)-roscovitine in complex with CDK2/cyclin A reveal that both inhibitors adopt similar binding modes. A competitive assay shows that, compared with (R)-roscovitine, N-&-N1 has reduced affinity for Erk2 and pyridoxal kinase. N-&-N1 triggers cell death in a panel of diverse cell lines. Cell death is accompanied by events characteristic of apoptosis: cytochrome c release, activation of effector caspases, and poly(ADP-ribose) polymerase cleavage. Induction of p53 and p21CIP1 and down-regulation of the Mcl-1 antiapoptotic factor were also observed. Studies in mice show that N-&-N1 has pharmacokinetics properties similar to those of (R)-roscovitine. Altogether, these results show that analogues of (R)-roscovitine can be designed with improved antitumor potential.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-08-0080DOI Listing

Publication Analysis

Top Keywords

n-&-n1
9
compared r-roscovitine
8
rna polymerase
8
cell death
8
r-roscovitine
6
n-&-n class
4
cell
4
class cell
4
cell death-inducing
4
death-inducing kinase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!