The insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through IGF-I receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-II binding and by inducing cell surface receptor down-regulation via internalization and degradation, with the extracellular and intracellular domains of IGF-IR being differentially affected by the proteasomal and lysosomal inhibitors. In vitro, h10H5 exhibits antiproliferative effects on cancer cell lines. In vivo, h10H5 shows single-agent antitumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models and even greater efficacy in combination with the chemotherapeutic agent docetaxel or an anti-vascular endothelial growth factor antibody. Antitumor activity of h10H5 is associated with decreased AKT activation and glucose uptake and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors and furthermore illustrate a new method of monitoring its activity noninvasively in vivo via 2-fluoro-2-deoxy-d-glucose-positron emission tomography imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-07-2401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!