Cardiac myocyte intracellular calcium varies beat-to-beat and calmodulin (CaM) transduces Ca2+ signals to regulate many cellular processes (e.g. via CaM targets such as CaM-dependent kinase and calcineurin). However, little is known about the dynamics of how CaM targets process the Ca2+ signals to generate appropriate biological responses in the heart. We hypothesized that the different affinities of CaM targets for the Ca2+-bound CaM (Ca2+-CaM) shape their actions through dynamic and tonic interactions in response to the repetitive Ca2+ signals in myocytes. To test our hypothesis, we used two fluorescence resonance energy transfer-based biosensors, BsCaM-45 (Kd = approximately 45 nm) and BsCaM-2 (Kd = approximately 2 nm), to monitor the real time Ca2+-CaM dynamics at low and high affinity CaM targets in paced adult ventricular myocytes. Compared with BsCaM-2, BsCaM-45 tracks the beat-to-beat Ca2+-CaM alterations more closely following the Ca2+ oscillations at each myocyte contraction. When pacing frequency is raised from 0.1 to 1.0 Hz, the higher affinity BsCaM-2 demonstrates significant elevation of diastolic Ca2+-CaM binding compared with the lower affinity BsCaM-45. Biochemically detailed computational models of Ca2+-CaM biosensors in beating cardiac myocytes revealed that the different Ca2+-CaM binding affinities of BsCaM-2 and BsCaM-45 are sufficient to predict their differing kinetics and diastolic integration. Thus, data from both experiments and computational modeling suggest that CaM targets with low versus high Ca2+-CaM affinities (like CaM-dependent kinase versus calcineurin) respond differentially to the same Ca2+ signal (phasic versus integrating), presumably tuned appropriately for their respective and distinct Ca2+ signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581591PMC
http://dx.doi.org/10.1074/jbc.M804902200DOI Listing

Publication Analysis

Top Keywords

cam targets
20
ca2+ signals
12
ventricular myocytes
8
low high
8
high affinity
8
cam-dependent kinase
8
bscam-2 bscam-45
8
ca2+-cam binding
8
cam
7
ca2+-cam
7

Similar Publications

Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin , a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

De-Escalation of Nodal Surgery in Clinically Node-Positive Breast Cancer.

JAMA Surg

January 2025

Breast Unit, Department of General Surgery, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.

Importance: Increasing evidence supports the oncologic safety of de-escalating axillary surgery for patients with breast cancer after neoadjuvant chemotherapy (NAC).

Objective: To evaluate the oncologic outcomes of de-escalating axillary surgery among patients with clinically node (cN)-positive breast cancer and patients whose disease became cN negative after NAC (ycN negative).

Design, Setting, And Participants: In the NEOSENTITURK MF-1803 prospective cohort registry trial, patients from 37 centers with cT1-4N1-3M0 disease treated with sentinel lymph node biopsy (SLNB) or targeted axillary dissection (TAD) alone or with ypN-negative or ypN-positive disease after NAC were recruited between February 15, 2019, and January 1, 2023, and evaluated.

View Article and Find Full Text PDF

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!