Myocardial protection by nitrite: evidence that this reperfusion therapeutic will not be lost in translation.

Trends Cardiovasc Med

Pulmonary and Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.

Published: July 2008

The circulating anion nitrite (NO(2)(-)), previously thought to be an inert product of nitric oxide (NO) oxidation, has now been identified as an important storage reservoir of bioavailable NO in the blood and tissues. Reduction of NO(2)(-) to NO over the physiologic pH and oxygen gradient by deoxyhemoglobin, myoglobin, xanthine oxidoreductase, and by nonenzymatic acidic disproportionation has been demonstrated to confer cytoprotection against ischemia-reperfusion injury in the heart, liver, brain, and kidney. Here, we review the mechanisms that have been established to regulate hypoxic NO(2)(-) reduction to NO, analyze the preclinical and clinical evidence supporting NO(2)(-)-mediated cytoprotection after ischemia-reperfusion injury, and examine the therapeutic potential of NO(2)(-) for cardiovascular disease. Evidence is accumulating that suggests NO(2)(-) has surmounted many of the direct challenges to reperfusion therapeutics summarized by the National Heart, Lung, and Blood Institute Working Group in "Myocardial protection at a crossroads: the need for translation into clinical therapy." In this context, we discuss important considerations in designing human clinical trials to test the efficacy of NO(2)(-) in the setting of ischemia-reperfusion injury, with particular attention to the study of ST-segment elevation myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcm.2008.05.001DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
12
cytoprotection ischemia-reperfusion
8
no2-
6
myocardial protection
4
protection nitrite
4
nitrite evidence
4
evidence reperfusion
4
reperfusion therapeutic
4
therapeutic will
4
will lost
4

Similar Publications

N-acetyl-tryptophan in Acute Kidney Injury after Cardiac Surgery.

J Am Soc Nephrol

January 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.

Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.

View Article and Find Full Text PDF

Synthetic Bilirubin-Based Nanomedicine Protects Against Renal Ischemia/Reperfusion Injury Through Antioxidant and Immune-Modulating Activity.

Adv Healthc Mater

January 2025

Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes.

View Article and Find Full Text PDF

The mitochondria as a potential therapeutic target in cerebral I/R injury.

Front Neurosci

January 2025

Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.

Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!