Sister-chromatid cohesion, the machinery used in eukaryote organisms to prevent aneuploidy, tethers sister chromatids together after their replication in S phase until mitosis. Previous studies in fission yeast, Drosophila and mammals have demonstrated the requirement for the heterochromatin formation pathway for proper centromeric cohesion. However, the exact role of heterochromatin protein 1 (HP1) in sister-chromatid cohesion in mammals is still unknown. In this study, we disrupted endogenous HP1 expression in HeLa cells using a dominant-negative mutant of HP1beta and wild-type or mutant forms of HP1alpha. We then examined their effects on chromosome alignment, segregation and cohesion. Enforced expression of these constructs leads to frequent chromosome misalignment and missegregation. Mitotic chromosomes from these cells also exhibit a loosened primary constriction and separated sister chromatids. We further demonstrate that alignment of the cohesin proteins around kinetochores was also aberrant and that cohesin complexes bound less tightly in these cells. Unexpectedly, we observed a "wavy" chromosome morphology resembling that seen upon depletion of condensin proteins in cells with over-expression of HP1alpha, but not in cells expressing the HP1beta mutant. These results indicate that proper HP1 status is required for sister-chromatid cohesion in mammalian cells, and suggest that HP1alpha might be required for chromosome condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2008.08.010DOI Listing

Publication Analysis

Top Keywords

sister-chromatid cohesion
16
sister chromatids
8
cohesion
6
cells
6
perturbation hp1
4
hp1 localization
4
localization chromatin
4
chromatin binding
4
binding ability
4
ability defects
4

Similar Publications

Prognostic Significance of DSCC1, a Biomarker Associated with Aggressive Features of Breast Cancer.

Medicina (Kaunas)

November 2024

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.

: Invasive breast cancer (BC) was traditionally investigated visually, and no technique could identify the key molecular drivers of patient survival. However, essential molecular drivers of invasive BC have now been discovered using innovative genomic, transcriptomic, and proteomic methodologies. Nevertheless, few evaluations of the prognostic factors of BC in Saudi Arabia have been performed.

View Article and Find Full Text PDF

Transcriptome-Wide Association Study of Metabolic Dysfunction-Associated Steatotic Liver Disease Identifies Relevant Gene Signatures.

Turk J Gastroenterol

December 2024

Department of Emergency Medicine, Shandong University, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Qingdao, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered the most widespread chronic liver condition globally. Genome-wide association studies (GWAS) have pinpointed several genetic loci correlated to MASLD, yet the biological significance of these loci remains poorly understood. Initially, we applied Functional Mapping and Annotation (FUMA) to conduct a functional annotation of the MASLD GWAS summary statistics, which included data from 3242 cases and 707 631 controls.

View Article and Find Full Text PDF

Nuclear Overexpression of SAMHD1 Induces M Phase Stalling in Hepatoma Cells and Suppresses HCC Progression by Interacting with the Cohesin Complex.

Adv Sci (Weinh)

December 2024

School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.

Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression.

View Article and Find Full Text PDF

Separase plays a central role in chromosome separation during mitosis and in centrosome cycle. Tight control of separase activity is required to prevent unscheduled resolution of sister chromatid cohesion and centrosome aberrations, thereby preserving genome stability. In mammals, despite their disassembly in early mitosis, some nuclear envelope components possess mitotic roles, but links with separase activity remain unexplored.

View Article and Find Full Text PDF

Introduction: Establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2), a member of the EFO2 family, is implicated in the pathogenesis and progression of various cancers. However, there has been limited comprehensive pan-cancer analysis conducted on ESCO2 thus far.

Methods: Publicly available databases, such as the UCSC Xena database, were utilized to examine differential expression patterns across various cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!