The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties, i.e., the complete shape formed by genomic regions. Our work is based on statistical shape theory and we use different approaches to analyze the considered structures, e.g., shape uniformity test, 3D point-based registration, Fisher distribution, and 3D non-rigid image registration for shape normalization. We have applied these approaches to analyze 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. We have acquired two sets of four consecutive genomic regions with an overlap of three regions. From the experimental results, it turned out that for all data sets the complete structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the average 3D structure of chromatin in a small genomic region (below 4 Mb) based on five BACs resulting from two overlapping four BAC regions. We found that geometric normalization with respect to the nucleus shape based on non-rigid image registration has a significant influence on the location of the genomic regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2008.08.007 | DOI Listing |
Scand J Urol
January 2025
Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.
View Article and Find Full Text PDFClin Dysmorphol
December 2024
Department of Pediatric Genetics.
Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.
View Article and Find Full Text PDFHeliyon
January 2025
ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India.
Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.
View Article and Find Full Text PDFJ Korean Med Sci
January 2025
Division of Rheumatology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
Background: Gout is a type of inflammatory arthritis caused by monosodium urate crystal deposits, and the prevalence of this condition has been increasing. This study aimed to determine the combined effects of genetic risk factors and lifestyle habits on gout, using data from a Korean cohort study. Identifying high-risk individuals in advance can help prevent gout and its associated disorders.
View Article and Find Full Text PDFVet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!