Normal and modified urinary nucleosides represent potential biomarkers for cancer diagnosis. To selectively extract modified nucleosides, we developed a molecularly imprinted polymer (MIP) of 5-methyluridine as selective material for molecularly imprinted solid-phase extraction (MISPE). The MIPs were obtained from vinyl-phenylboronate ester derivative of the template, acrylamide and pentaerythritol triacrylate co-polymer, and were tested in batch and cartridge experiments with aqueous samples. Our results indicated that the imprinted polymer was selective for pyrimidine nucleosides with a K(d) and a B(max) of 46 microM and 18 micromol/g, respectively. Finally, a MISPE of the most common pyrimidine nucleoside cancer markers in urine sample was realized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.08.063DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
imprinted polymer
12
solid-phase extraction
8
pyrimidine nucleoside
8
nucleoside cancer
8
cancer markers
8
markers urine
8
polymer 5-methyluridine
4
5-methyluridine solid-phase
4
extraction pyrimidine
4

Similar Publications

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples.

Polymers (Basel)

January 2025

Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized.

View Article and Find Full Text PDF

The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).

View Article and Find Full Text PDF

Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.

View Article and Find Full Text PDF

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!