We report the results of an investigation of the inhibition of the ATP-mediated HIV-1 reverse transcriptase catalyzed phosphorolysis in vitro of AZT from AZT-terminated DNA primers by a series of 42 bisphosphonates. The four most active compounds possess neutral, halogen-substituted phenyl or biphenyl sidechains and have IC(50) values < 1 microM in excision inhibition assays. Use of two comparative molecular similarity analysis methods to analyze these inhibition results yielded a classification model with an overall accuracy of 94%, and a regression model having good accord with experiment (q(2)=0.63, r(2)=0.91), with the experimental activities being predicted within, on average, a factor of 2. The most active species had little or no toxicity against three human cell lines (IC(50)(avg) > 200 microM). These results are of general interest since they suggest that it may be possible to develop potent bisphosphonate-based AZT-excision inhibitors with little cellular toxicity, opening up a new route to restoring AZT sensitivity in otherwise resistant HIV-1 strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586422PMC
http://dx.doi.org/10.1016/j.bmc.2008.08.047DOI Listing

Publication Analysis

Top Keywords

atp-mediated hiv-1
8
hiv-1 reverse
8
reverse transcriptase
8
transcriptase catalyzed
8
bisphosphonate inhibitors
4
inhibitors atp-mediated
4
catalyzed excision
4
excision chain-terminating
4
chain-terminating 3'-azido
4
3'-azido 3'-deoxythymidine
4

Similar Publications

Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase.

Antimicrob Agents Chemother

September 2020

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain

In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT).

View Article and Find Full Text PDF

Amino acid residues in HIV-2 reverse transcriptase that restrict the development of nucleoside analogue resistance through the excision pathway.

J Biol Chem

February 2018

From the Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid,

Nucleoside reverse transcriptase (RT) inhibitors (NRTIs) are the backbone of current antiretroviral treatments. However, the emergence of viral resistance against NRTIs is a major threat to their therapeutic effectiveness. In HIV-1, NRTI resistance-associated mutations either reduce RT-mediated incorporation of NRTI triphosphates (discrimination mechanism) or confer an ATP-mediated nucleotide excision activity that removes the inhibitor from the 3' terminus of DNA primers, enabling further primer elongation (excision mechanism).

View Article and Find Full Text PDF

3'-Azidothymidine (AZT) was the first approved antiviral for the treatment of human immunodeficiency virus (HIV). Reported efforts in clicking the 3'-azido group of AZT have not yielded 1,2,3-triazoles active against HIV or any other viruses. We report herein the first AZT-derived 1,2,3-triazoles with submicromolar potencies against HIV-1.

View Article and Find Full Text PDF

Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor (NtRTI) that is often administered as first-line therapy against human immunodeficiency virus type-1 (HIV-1) infection and acts as a chain terminator when incorporated into viral DNA. However, HIV-1 reverse transcriptase (RT) excises TFV in the presence of either ATP or pyrophosphate, which is an important drug resistance mechanism that would interfere with the effective treatment. Previous studies have shown conflicting results on excision efficiencies for TFV-terminated primer-templates derived from either primer binding site (PBS) or polypurine tract (PPT) sequences.

View Article and Find Full Text PDF

β-D-3'-Azido-2',3'-dideoxyguanosine (3'-azido-ddG) is a potent inhibitor of HIV-1 replication with a superior resistance profile to zidovudine. Recently, we identified five novel 6-modified-3'-azido-ddG analogs that exhibit similar or superior anti-HIV-1 activity compared to 3'-azido-ddG in primary cells. To gain insight into their structure-activity-resistance relationships, we synthesized their triphosphate (TP) forms and assessed their ability to inhibit HIV-1 reverse transcriptase (RT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!