Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The NIK (NSP-interacting kinase)-mediated antiviral signaling pathway was identified as a virulence target of the begomovirus nuclear shuttle protein (NSP). Here, we further characterized this layer of plant innate defense by identifying the ribosomal protein L10 (rpL10), a QM-like protein, as a downstream effector of the antiviral signaling. Although both ribosomal proteins rpL10 and rpL18 were found to associate with NIK1 through yeast two-hybrid screening, the NIK receptors specifically phosphorylated rpL10 in vitro. Furthermore, loss of rpL10 function significantly increased susceptibility to begomovirus infection, recapitulating the phenotype of nik knockout lines. Our results genetically linked rpL10 to the NIK-mediated antiviral signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2008.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!