Imprinting control regions (ICRs) are domains within imprinted loci that are essential for their establishment and maintenance. Imprinted loci can extend over several megabases, encompass both maternally and paternally-expressed genes and exhibit multiple and complex epigenetic modifications including large regions of allele-specific DNA methylation. Differential chromatin organisation has also been observed within imprinted loci but is restricted to the ICRs. In this study we report the identification of a novel imprinting control region for the mouse Neuronatin gene. This biochemically defined putative ICR, present within its 250 bp second intron, functions as transcriptional activator in Drosophila. This is unlike other known ICRs which have been shown to function as transcriptional silencers. Furthermore, at the endogenous locus, the activating signal from the ICR extends to the Neuronatin promoter via allele-specific unidirectional nucleosomal positioning. Our results support the proposal that the Neuronatin locus employs the most basic mechanism for establishing allele-specific gene expression and could provide the foundation for the multiplex arrangements reported at more complex loci.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2008.08.002DOI Listing

Publication Analysis

Top Keywords

imprinted loci
12
mouse neuronatin
8
neuronatin gene
8
transcriptional activator
8
activator drosophila
8
imprinting control
8
intronic dna
4
dna sequence
4
sequence mouse
4
neuronatin
4

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF
Article Synopsis
  • Timely translation of maternal mRNA is crucial for oocyte maturation and embryonic development; PGC7 is identified as a key maternal factor in this process.
  • PGC7 maintains AKT1 activity and promotes the phosphorylation of the translation inhibitor YBX1, crucial for maternal mRNA translation.
  • The study reveals PGC7’s essential role in regulating the PGC7-AKT1-YBX1 axis, leading to enhanced translation of important maternal proteins like Cyclin B1 and YAP1 in mammalian oocytes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!