Methyl isobutyl ketone (MIBK) is a solvent used in numerous products and processes and may be present in the air of the workplace as a vapor. The American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value-time-weighted average (TLV-TWA) and TLV-short term exposure limit (TLV-STEL) for MIBK are 50 and 75 ppm, respectively. These workplace air concentration limits were set to protect workers from irritation, neurasthenic symptoms and possible adverse effects to their livers and kidneys. A recent revision of the ACGIH limit value has been proposed, to reduce the current TLV-TWA to 30 ppm. This article predicts the kinetics and accumulation of MIBK in humans exposed repeatedly in various exposure scenarios (8, 12, and 24h/day for 7 days) to the current ACGIH TLV-TWA of 50 ppm. The kinetic parameters of the model were derived from published human time-course blood MIBK data from a single 2h inhalation exposure to 48.9 ppm MIBK. The model correctly simulated single exposure experimental data with a rapid rise in blood concentration to 1.06 microg/ml within 1h and approached >or=99% steady-state blood level in 4h of exposure. MIBK was predicted to be rapidly eliminated from blood after terminating the exposure, reaching 0.53 microg/ml and 0.13 microg/ml within 0.5 and 2h post-exposure, respectively. Within 4h after the termination of exposure, blood concentration would be expected to <1% of the steady-state concentration. On the basis of these results, it is concluded that accumulation of MIBK in workers due to repeated inhalation exposure is not likely to occur at the current TLV-TWA concentration of 50 ppm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2008.08.007 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
Hexaanionic cyclophosphazenate ligands [(RN)PN] provide versatile platforms for the assembly of multinuclear metal arrays due to their multiple coordination sites and highly flexible ligand core structure. This work investigates the impact of incrementally increasing the steric demand of the ligand periphery on the coordination behavior of ethylzinc arrays. It shows that the increased congestion around the ligand sites is alleviated by progressive condensation with the elimination of diethylzinc.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, 3999 Binjiang East Road, Fengman District, Jilin 132013, China.
This study focused on extracting holocellulose from Changbai larch waste, which is rich in hexose and beneficial for furan chemicals production. Various alkaline deep eutectic solvents (DESs) was applied in the extraction of holocellulose. DES composed of lysine (Lys) and 2-aminoethanol (MEA) with strong alkalinity had a superior ability to remove lignin, and the purity of holocellulose could reach 82.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
This study investigates Marangoni effect-induced structural changes in spin-coated polymer nanocomposite (PNC) films composed of poly(methyl methacrylate)-grafted silica nanoparticles (NPs) and poly(styrene--acrylonitrile). Films cast from methyl isobutyl ketone (MIBK) solvent exhibit distinct hexagonal honeycomb cells with thickness gradients driven by surface tension variations. Atomic force microscopy reveals protruded ridges and junctions at cell intersections, where NP concentration is the highest.
View Article and Find Full Text PDFRSC Adv
October 2024
Department of Biochemistry, University of Kragujevac, Faculty of Medical Sciences Svetozara Markovića 69 Kragujevac 34000 Serbia +381 65 84 777 68.
Over the last few decades, we have gained insight into how researchers attempted to modify some natural molecules to be utilized as prospective agents for cancer treatment. Many scientists synthesized new natural compounds by incorporating specific functional groups and metals that improved their antitumor activity while reducing undesirable side effects. In this investigation, we synthesized four novel structurally modified enones that differ in the functional groups attached to the carbonyl group of the enone system (methyl - E1; isopropyl - E2; isobutyl - E3; and cyclopropyl - E4) and explored their anticancer potential against human carcinoma of the colon HCT-116, the cervical HeLa, and normal lung cells MRC-5.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
Tetrakisporphyrin monomers with amino acid side chains at each end form intramolecular antiparallel hydrogen-bonds to adopt chirally twisted pseudo-macrocyclic structures that result in right-handed and left-handed (P)- and (M)-conformations. The pseudo-macrocyclic tetrakisporphyrin monomers self-assembled to form supramolecular helical pseudo-polycatenane polymers via head-to-head complementary dimerization of the bisporphyrin cleft units in an isodesmic manner. The formation of one-handed supramolecular helical pseudo-polycatenane polymers was confirmed by circular dichroism (CD) spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!