The utilization of human embryonic stem cells (hESC) in regenerative medicine largely depends on the development of technologies that will allow efficient genetic manipulation of the cells in vitro. Although a few studies have described the transfection of hESC for generation of reporter lines stably expressing specific transgenes driven by different promoters, the optimal choice of promoter system for driving transgene in hESC has yet to be elucidated. We show for the first time that Chinese hamster elongation factor-1 alpha (CHEF1) promoter robustly drove reporter gene expression higher than the human elongation factor 1 alpha (hEF1 alpha), other constitutive Chinese hamster promoters, human cytomegalovirus (CMV) immediate early enhancer/promoter and SV40 promoters in hESC by quantitative analysis. We also successfully generated stably transfected hESC lines using this CHEF1 promoter system and demonstrated that they continued to express enhanced green fluorescent protein (EGFP) during prolonged undifferentiated proliferation, in differentiated embryoid bodies (EBs), and in teratomas without transgene silencing. By immunofluorescence staining and D ow cytometry analysis, the pluripotent markers, OCT-4, SSEA-4, and TRA-1-60, continued to be expressed in undifferentiated CHEF1-EGFP expressing hESC lines. When the stably transfected hESC were directed to differentiate into neural precursors in vitro, high-level EGFP expression was maintained and co-expression of neural markers, Nestin, and beta-tubulin III was observed. The morphology, karyotype, and telomerase activity of CHEF1-EGFP expressing hESC were normal after >50 continuous passages, and the cells retained the ability to differentiate into derivatives of the three germ layers in vitro as confirmed by RT-PCR analysis and immunocytochemical staining and in vivo teratoma formation. Therefore, stable CHEF1-EGFP hESC lines retained the capability for self-renewal and pluripotency. The novel CHEF1 promoter system described here enables high-level transgene expression in the stably transfected hESC. It may have signi, cant implication for uses in bioprocess development and future development of gene-modified hESC in tissue regeneration and transplantation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2007.0233DOI Listing

Publication Analysis

Top Keywords

promoter system
16
chinese hamster
12
chef1 promoter
12
stably transfected
12
transfected hesc
12
hesc lines
12
hesc
11
human embryonic
8
embryonic stem
8
hamster elongation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!