In vitro evaluation of erbium, chromium:yttrium-scandium-gallium-garnet laser-treated enamel demineralization.

Lasers Med Sci

Department of Restorative Dentistry, School of Dentistry, University of São Paulo (USP), Prof. Lineu Prestes, 2227, Cidade Universitária, Butantã, São Paulo, SP 05508-900, Brazil.

Published: March 2010

This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel's resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-008-0597-4DOI Listing

Publication Analysis

Top Keywords

ercrysgg laser
12
erbium chromiumyttrium-scandium-gallium-garnet
8
laser irradiation
8
mineral loss
8
laser
6
vitro evaluation
4
evaluation erbium
4
chromiumyttrium-scandium-gallium-garnet laser-treated
4
enamel
4
laser-treated enamel
4

Similar Publications

The aim was to prepare experimental adhesive (EA) with ZrO nanoparticles (ZEA) and without it; and its interaction with dentin conditioned with photodynamic therapy (PDT), etch and rinse, and Er, Cr: YSGG laser (ECL). Methods consisted of the scanning electron microscope (SEM), energy dispersive X-ray (EDX), shear bond strength (SBS) failure mode, and rheological property analysis. The methods were employed to assess bond integrity; the shape of ZrO NPs and interfacial dentin and adhesive interaction.

View Article and Find Full Text PDF

The study aimed to analyze the effect of the addition of nano-hydroxyapatite (nano-HA) particles on the mechanical properties of experimental adhesive (EA). Furthermore, dentin interaction of EA (without nano-HA) and EA with nano-HA (hereon referred to as HA-10%) were also investigated and equated. Methods consisting of scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, micro-tensile bond strength (µTBS) test, and Fourier transform infrared (FTIR) spectroscopy were employed to study nano-HA particles shape, dentin bond strength, degree of conversion (DC), and adhesive-dentin interaction.

View Article and Find Full Text PDF

The present study aimed to synthesize and equate the mechanical properties and dentin interaction of two adhesives; experimental adhesive (EA) and 5 wt.% reduced graphene oxide rGO) containing adhesive. Scanning electron microscopy (SEM)-Energy-dispersive X-ray spectroscopy (EDX), Micro-Raman spectroscopy, push-out bond strength test, and Fourier Transform Infrared (FTIR) spectroscopy were employed to study nano-bond strength, degree of conversion (DC), and adhesive-dentin interaction.

View Article and Find Full Text PDF

Influence of fractional carbon-dioxide laser in comparison to ErCr-YSGG on the dentin bond integrity of bioactive materials.

Pak J Med Sci

January 2020

Zaid Al-Jeaidi Associate Professor, Conservative Dental Science Department, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Objective: The aim was to assess the influence of Er, Cr: YSGG laser (ECL) and fractional carbon dioxide laser (FCL) on the shear bond strength (SBS) and microleakage of bioactive restorative material to dentin.

Methods: The study was performed in King Saud university in the month of June-July 2019. One hundred and twenty permanent teeth were vertically placed in acrylic resin.

View Article and Find Full Text PDF

Effect of photodynamic therapy and ErCrYSGG laser irradiation on the push-out bond strength between fiber post and root dentin.

Photodiagnosis Photodyn Ther

September 2019

Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University; Engineer Abdullah Bugshan Research Chair For Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:

Background: To evaluate the push out bond strength and modes of failure of fiber post by using photodynamic therapy (PDT), Er,Cr:YSGG laser and conventional cleaning and shaping (CCS).

Methods: Sixty maxillary anterior teeth were sectioned horizontaly 2 mm incisal to the cemento-enamel junction, and root canal were prepared for post space. Tapered fiber posts were placed inside the root canal after post space was made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!