Imaging of transient structures using nanosecond in situ TEM.

Science

Materials Science and Technology Division, Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.

Published: September 2008

The microstructure and properties of a material depend on dynamic processes such as defect motion, nucleation and growth, and phase transitions. Transmission electron microscopy (TEM) can spatially resolve these nanoscale phenomena but lacks the time resolution for direct observation. We used a photoemitted electron pulse to probe dynamic events with "snapshot" diffraction and imaging at 15-nanosecond resolution inside of a dynamic TEM. With the use of this capability, the moving reaction front of reactive nanolaminates is observed in situ. Time-resolved images and diffraction show a transient cellular morphology in a dynamically mixing, self-propagating reaction front, revealing brief phase separation during cooling, and thus provide insights into the mechanisms driving the self-propagating high-temperature synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1161517DOI Listing

Publication Analysis

Top Keywords

reaction front
8
imaging transient
4
transient structures
4
structures nanosecond
4
nanosecond situ
4
situ tem
4
tem microstructure
4
microstructure properties
4
properties material
4
material depend
4

Similar Publications

Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke.

Front Mol Neurosci

January 2025

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.

PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay.

View Article and Find Full Text PDF

Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.

View Article and Find Full Text PDF

Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and progressive joint destruction. Neutrophil extracellular traps (NETs), a microreticular structure formed after neutrophil death, have recently been implicated in RA pathogenesis and pathological mechanisms. However, the underlying molecular mechanisms and key genes involved in NET formation in RA remain largely unknown.

View Article and Find Full Text PDF

Background: Abnormal thyroid hormone levels may occur in critical illness, which may have an interactive relationship with inflammatory reaction. At present, the relationship between triiodothyronine (T3)/thyroxine (T4) ratio and inflammatory indicators and all-cause mortality of stroke survivors is still unclear.

Methods: We obtained the relevant data of the respondents from 2007 to 2012 through the National Health and Nutrition Examination Survey (NHANES) database for statistical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!