Inactivation of glucocorticoids by 11beta-hydroxysteroid dehydrogenase enzymes increases during the meiotic maturation of porcine oocytes.

Reproduction

Division of Clinical Developmental Sciences, Academic Section of Obstetrics and Gynaecology, Centre for Developmental and Endocrine Signalling, St George's University of London, Cranmer Terrace, London, UK.

Published: December 2008

Recent reports have shown that glucocorticoids can modulate oocyte maturation in both teleost fish and mammals. Within potential target cells, the actions of physiological glucocorticoids are modulated by 11beta-hydroxysteroid dehydrogenase (HSD11B) isoenzymes that catalyse the interconversion of cortisol and cortisone. Hence, the objective of this study was to establish whether HSD11B enzymes mediate cortisol-cortisone metabolism in porcine oocytes and, if so, whether the rate of glucocorticoid metabolism changes during oocyte maturation. Enzyme activities were measured in cumulus-oocyte complexes (COCs) and denuded oocytes (DOs) using radiometric conversion assays. While COCs and DOs oxidised cortisol to inert cortisone, there was no detectable regeneration of cortisol from cortisone. The rate of cortisol oxidation was higher in expanded COCs than in compact COCs containing germinal vesicle (GV) stage oocytes (111+/-6 vs 2041+/-115 fmol cortisone/oocyte.24 h; P<0.001). Likewise, HSD11B activities were 17+/-1 fold higher in DOs from expanded COCs than in those from compact COCs (P<0.001). When GV stage oocytes were subject to a 48 h in vitro maturation protocol, the enzyme activities were significantly increased from 146+/-18 to 1857+/-276 fmol cortisone/oocyte.24 h in GV versus MII stage oocytes respectively (P<0.001). Cortisol metabolism was inhibited by established pharmacological inhibitors of HSD11B (glycyrrhetinic acid and carbenoxolone), and by porcine follicular and ovarian cyst fluid. We conclude that an HSD11B enzyme (or enzymes) functions within porcine oocytes to oxidise cortisol, and that this enzymatic inactivation of cortisol increases during oocyte maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-08-0289DOI Listing

Publication Analysis

Top Keywords

11beta-hydroxysteroid dehydrogenase
8
porcine oocytes
8
oocyte maturation
8
cortisol cortisone
8
inactivation glucocorticoids
4
glucocorticoids 11beta-hydroxysteroid
4
dehydrogenase enzymes
4
enzymes increases
4
increases meiotic
4
meiotic maturation
4

Similar Publications

Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.

View Article and Find Full Text PDF

This case report describes an adult man in his 50s with a history of type 2 diabetes and previously well-controlled hypertension, who presented with uncontrolled hypertension, muscle weakness and fatigue. Biochemical testing revealed hypokalaemia. There was no evidence of renal/renovascular disease.

View Article and Find Full Text PDF

This review demonstrates the value of central pharmacodynamics (PD), including positron emission tomography (PET) and computerized cognitive testing, to supplement pharmacokinetic (PK) and peripheral PD for determining the target dose range for clinical efficacy testing of emestedastat, an 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor. Combined data from 6 clinical trials in cognitively normal volunteers and patients with Alzheimer disease included a population PK model, endocrine PD, a human PET trial (11β-HSD1 brain imaging), and computerized cognitive testing. PK and PET findings were similar in volunteers and patients with Alzheimer disease.

View Article and Find Full Text PDF

Rare Types of Congenital Adrenal Hyperplasias Other Than 21-hydroxylase Deficiency.

J Clin Res Pediatr Endocrinol

January 2025

University of Health Sciences Turkey, Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey

Although the most common cause of congenital adrenal hyperplasia (CAH) worldwide is 21-hydroxylase deficiency (21-OHD), which accounts for more than 95% of cases, other rare causes of CAH such as 11-beta-hydroxylase deficiency (11β-OHD), 3-beta-hydroxy steroid dehydrogenase (3β-HSD) deficiency, 17-hydroxylase deficiency and lipoid CAH (LCAH) may also be encountered in clinical practice. 11β-OHD is the most common type of CAH after 21-OHD, and CYP11B1 deficiency in adrenal steroidogenesis causes the inability to produce cortisol and aldosterone and the excessive production of adrenal androgens. Although the clinical and laboratory features are similar to 21-OHD, findings of mineralocorticoid deficiency are not observed.

View Article and Find Full Text PDF

Electrospun 11β-HSD1 Inhibitor-Loaded Scaffolds for Accelerating Diabetic Ulcer Healing.

ACS Appl Bio Mater

December 2024

Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Diabetic ulcers (DUs) are a common and severe complication of diabetes, characterized by impaired wound healing due to a complex pathophysiological mechanism. Elevated levels of 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in wounds have been demonstrated to modulate glucocorticoid activity, leading to delayed skin cell proliferation and restricted angiogenesis, ultimately hindering wound healing. In this study, we propose an electrospun poly(ε-caprolactone) (PCL) nanofiber scaffold doped with the 11β-HSD1 inhibitor BVT2733 (BPs) to prevent 11β-HSD1 activity during the diabetic wound healing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!