A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous removal of carbon and nitrate in an airlift bioreactor. | LitMetric

Simultaneous removal of carbon and nitrate in an airlift bioreactor.

Bioresour Technol

Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, India.

Published: February 2009

This paper presents the integrated removal of carbon (measured as chemical oxygen demand i.e. COD) and NO(x)-N by sequentially adapted sludge, studied in an airlift reactor (ALR). Simultaneous removal of COD and nitrate occurs by denitrification (anoxic) and oxidation (aerobic). Aerobic (riser) and anoxic (remaining part) conditions prevail in different parts of the reactor. Studies were carried out in a 42 L ALR operated at low aeration rate to maintain anoxic and aerobic conditions as required for denitrification and COD removal, respectively. The sludge was adapted sequentially to increasing levels of NO(x)-N and COD over a period of 45 days. Nitrate removal efficiency of the sludge increased due to adaptation and degraded 900 ppm NO(3)-N completely in 2h (initially the sludge could not degrade 100 ppm NO(3)-N). The performance of the adapted sludge was tested for the degradation of synthetic waste with COD/N loadings in the range of 4-10. The reduction of COD was significantly faster in the presence of NO(x)-N and was attributed to the availability of oxygen from NO(x)-N and distinct conditions in the reactor. This hypothesis was justified by the material balance of COD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2008.07.060DOI Listing

Publication Analysis

Top Keywords

simultaneous removal
8
removal carbon
8
adapted sludge
8
ppm no3-n
8
cod
6
sludge
5
carbon nitrate
4
nitrate airlift
4
airlift bioreactor
4
bioreactor paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!