Anion exchange is one of the most promising treatment technologies for the removal of low levels of perchlorate. The spent anion-exchange resins, however, need to be disposed of or regenerated because they contain high contents of perchlorate. This study investigated the feasibility and kinetics of a direct bio-regeneration method. The method accomplished resin regeneration and biological perchlorate destruction concurrently, by directly contacting the spent resin with the perchlorate-reducing bacteria (PRB). The results indicated that the method was effective in regeneration of perchlorate and nitrate loaded resin and the resin could be repeatedly regenerated with the method. The regenerated resin was effective, stable, and durable in the filtration treatment of perchlorate in well water from the Saddle River area, NJ. Moreover, the method was also effective in regeneration of the spent A-530E resin, which had high perchlorate affinity and was yet very difficult for regeneration with the conventional brine desorption technique. Besides, the results further suggested that the perchlorate and nitrate desorption from the loaded resin coupling with their subsequent biological reduction could be the direct bio-regeneration mechanism. No biofilm was formed on the regenerated resin surface according to a scanning electron microscopy (SEM) analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2008.08.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!