The highly conserved Wingless/Wnt signaling pathway controls many developmental processes by regulating the expression of target genes, most often through members of the TCF family of DNA-binding proteins. In the absence of signaling, many of these targets are silenced, by mechanisms involving TCFs that are not fully understood. Here we report that the chromatin remodeling proteins ISWI and ACF1 are required for basal repression of WG target genes in Drosophila. This regulation is not due to global repression by ISWI and ACF1 and is distinct from their previously reported role in chromatin assembly. While ISWI is localized to the same regions of Wingless target gene chromatin as TCF, we find that ACF1 binds much more broadly to target loci. This broad distribution of ACF1 is dependent on ISWI. ISWI and ACF1 are required for TCF binding to chromatin, while a TCF-independent role of ISWI-ACF1 in repression of Wingless targets is also observed. Finally, we show that Wingless signaling reduces ACF1 binding to WG targets, and ISWI and ACF1 regulate repression by antagonizing histone H4 acetylation. Our results argue that WG signaling activates target gene expression partly by overcoming the chromatin barrier maintained by ISWI and ACF1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137263 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2008.08.011 | DOI Listing |
Elife
March 2022
Institute of Molecular Biology, University of Oregon, Eugene, United States.
Establishing and maintaining appropriate gene repression is critical for the health and development of multicellular organisms. Histone H3 lysine 27 (H3K27) methylation is a chromatin modification associated with repressed facultative heterochromatin, but the mechanism of this repression remains unclear. We used a forward genetic approach to identify genes involved in transcriptional silencing of H3K27-methylated chromatin in the filamentous fungus .
View Article and Find Full Text PDFLife Sci Alliance
January 2018
Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University Munich, Planegg-Martinsried, Germany.
The chromatin remodeling complexes chromatin accessibility complex and ATP-utilizing chromatin assembly and remodeling factor (ACF) combine the ATPase ISWI with the signature subunit ACF1. These enzymes catalyze well-studied nucleosome sliding reactions in vitro, but how their actions affect physiological gene expression remains unclear. Here, we explored the influence of chromatin accessibility complex/ACF on transcription by using complementary gain- and loss-of-function approaches.
View Article and Find Full Text PDFDev Biol
March 2016
Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany. Electronic address:
The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin.
View Article and Find Full Text PDFNucleic Acids Res
August 2015
Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
Chromatin immunoprecipitation (ChIP) is widely used to identify chromosomal binding sites. Chromatin proteins are cross-linked to their target sequences in living cells. The purified chromatin is sheared and the relevant protein is enriched by immunoprecipitation with specific antibodies.
View Article and Find Full Text PDFJ Cell Biol
December 2014
Robson DNA Science Centre, Southern Alberta Cancer Research Institute; and Department of Biochemistry and Molecular Biology and Department of Oncology, Cumming School of Medicine; University of Calgary, Calgary, Alberta T2N 4N1, Canada Robson DNA Science Centre, Southern Alberta Cancer Research Institute; and Department of Biochemistry and Molecular Biology and Department of Oncology, Cumming School of Medicine; University of Calgary, Calgary, Alberta T2N 4N1, Canada Robson DNA Science Centre, Southern Alberta Cancer Research Institute; and Department of Biochemistry and Molecular Biology and Department of Oncology, Cumming School of Medicine; University of Calgary, Calgary, Alberta T2N 4N1, Canada
Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!