The genetic mechanisms that regulate neurodegeneration are only poorly understood. We show that the loss of one allele of the p53 family member, p73, makes mice susceptible to neurodegeneration as a consequence of aging or Alzheimer's disease (AD). Behavioral analyses demonstrated that old, but not young, p73+/- mice displayed reduced motor and cognitive function, CNS atrophy, and neuronal degeneration. Unexpectedly, brains of aged p73+/- mice demonstrated dramatic accumulations of phospho-tau (P-tau)-positive filaments. Moreover, when crossed to a mouse model of AD expressing a mutant amyloid precursor protein, brains of these mice showed neuronal degeneration and early and robust formation of tangle-like structures containing P-tau. The increase in P-tau was likely mediated by JNK; in p73+/- neurons, the activity of the p73 target JNK was enhanced, and JNK regulated P-tau levels. Thus, p73 is essential for preventing neurodegeneration, and haploinsufficiency for p73 may be a susceptibility factor for AD and other neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2008.07.021DOI Listing

Publication Analysis

Top Keywords

aging alzheimer's
8
alzheimer's disease
8
p73+/- mice
8
neuronal degeneration
8
p73
5
p73 regulates
4
neurodegeneration
4
regulates neurodegeneration
4
neurodegeneration phospho-tau
4
phospho-tau accumulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!