As there is limited information on the mechanisms of vegetative desiccation tolerance in pteridophytes, we undertook a comprehensive anatomical, ultrastructural, physiological and biochemical study on the fern Mohria caffrorum. Our data show that this species is desiccation-tolerant during the dry season, and desiccation-sensitive in the rainy season. This system allows the verification of protection mechanisms by comparison of tolerant and sensitive tissues of the same species at the same developmental age. Tolerant fronds acquire protection mechanisms during drying that are mostly similar to those reported for angiosperms. These include: (i) chlorophyll masking by abaxial scales and frond curling; (ii) increased antioxidant capacity that is maintained in dry tissues; (iii) mechanical stabilization of vacuoles in the dry state; (iv) de novo production of heat stable proteins (at least one identified as a putative chaperonin); (v) accumulation of protective carbohydrates (sucrose, raffinose family oligosaccharides and cyclitols). This study has implications for the biotechnological production of drought-tolerant crops, and allows speculation on the evolution of vegetative desiccation tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2008.03673.x | DOI Listing |
mBio
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.
Unlabelled: Climate change is predicted to increase the spread of mosquito-borne viruses, but genetic mechanisms underlying the influence of environmental variation on the ability of insect vectors to transmit human pathogens is unknown. In response to a changing climate, mosquitoes will experience longer periods of drought. An important physiological response to dry environments is the protection against dehydration, here defined as desiccation tolerance.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
State Key Laboratory of Desert and Oasis Ecology, Key laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
Protein Sci
February 2025
Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA.
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
Drying wheat (Triticum durum ) seeds within their spikes may improve the seed desiccation tolerance. This study aimed to understand the effect of drying wheat seeds within their spikes on their desiccation tolerance in association with GABA (γ-aminobutyric acid) content, malondialdehyde (MDA), the expression of three dehydrin genes (dhn , wcor , dreb ) during seed development. Seeds of wheat variety 'Hourani-Nawawi' were harvested at five developmental stages: (1) milk (ML); (2) soft dough (SD); (3) hard dough (HD); (4) physiological maturity (PM); and (5) harvest maturity (HM) and dried either attached to or detached from their spikes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.
The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!