Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase.

Physiol Plant

UMR 990, Génomique et Biotechnologie des Fruits, INRA-INP/ENSAT, Université de Toulouse, BP 32607, 31326 Castanet-Tolosan, Cedex, France.

Published: November 2008

Grape is considered as a non-climacteric fruit, the maturation of which is independent of ethylene. However, previous work had shown that ethylene is capable of affecting the physiological processes during maturation of grape berries. Experiments were designed to screen the gene pool affected by ethylene at the ripening inception in Cabernet Sauvignon berries. The results showed that only 73 of 14 562 genes of microarray slides were significantly modulated by a 24-h ethylene treatment (4 microl l(-1)), performed 8 weeks after flowering. The study then focused on accumulation of several mRNAs affected by ethylene in relation to the berry size. Indeed, we observed that ethylene application at véraison led to a berry diameter increase. This increase is mainly because of sap intake and cell wall modifications, enabling cell elongation. This was related to changes in the expression pattern of many genes, classified in two groups: (1) 'water exchange' genes: various aquaporins (AQUA) and (2) 'cell wall structure' genes: polygalacturonases, xyloglucan endotransglucosylases (XTH), pectin methyl esterases, cellulose synthases and expansins. The expression patterns were followed either along berry development or in three berry tissues (peel, pulp and seeds). Ethylene stimulates the accumulation of most gene transcripts in 1 h, and in several parts of the berry, this stimulation may last for 24 h in some cases. One XTH and one AQUA seem to be good candidates to explain the ethylene-induced berry expansion. This work brings more clues about the ethylene involvement in the development and ripening of grape berries.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2008.01158.xDOI Listing

Publication Analysis

Top Keywords

ethylene
9
berry expansion
8
gene transcripts
8
grape berries
8
berry
7
stimulation grape
4
grape berry
4
expansion ethylene
4
ethylene effects
4
effects gene
4

Similar Publications

At present, the modification of palladium (Pd) catalysts is an important topic due to its potential to enhance catalytic performance and reduce catalyst costs. In this work, boron (B) and carbon (C) are interstitially doped into the subsurface of Pd to construct PdB and PdC catalysts. The adsorption properties of acetylene and ethylene, the mechanism of acetylene hydrogenation, and ethylene selectivity are studied based on density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Cation-Vacancy Engineering in Cobalt Selenide Boosts Electrocatalytic Upcycling of Polyester Thermoplastics at Industrial-Level Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.

View Article and Find Full Text PDF

Generating Beta Zeolite Nanosheets of Intergrown Polymorph B and C Using Polycationic Structure-Directing Agent.

Small

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!