Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac)2(C2H4)2. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C2H4)2(2+), tightly bonded to the surface by two Ru-O bonds at Al(3+) sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al(3+) sites; at higher loadings, some of the cis-Ru(acac)2(C2H4)2 was physisorbed. In the presence of ethylene and H2, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C2H4)2(2+) species was dissociated and captured by an Al(3+) site. Ethylene dimerization proceeded approximately 600 times faster with a cofeed of ethylene and H2 than without H2. These results provide evidence of the importance of the cooperation of the Al(3+) sites in the zeolite and the H2 in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja804265r | DOI Listing |
Inorg Chem
December 2024
Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
Defect engineering in SrTiO crystals plays a pivotal role in achieving efficient overall solar water splitting, as evidenced by the influence of Al ions. However, the uneven structural relaxation caused by Al ions has been overlooked, significantly affecting the defect state and catalytic activity. When an AlO crucible is used, optimizing this defect engineering presents a significant challenge.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
γ-AlO is a crucial catalyst widely used in industrial alcohol dehydration processes. However, the specific nature of its active sites has remained unclear. In this study, we utilize two-dimensional heteronuclear correlation solid-state nuclear magnetic resonance and density functional theory calculations to uncover the active Al sites on the surface of γ-AlO that facilitate ethanol dehydration.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al species. The number of active sorption sites associated with Al species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, PR China; Institute of Biomass & Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
The accelerated depletion of fossil resources and the rising demand for environmental protection have posed significant challenges to conventional e-smart textiles, driving the need for more sustainable alternatives. This has created an urgent demand for environmentally friendly, lightweight, and renewable smart textiles. This study developed biomass-derived flexible conductive fabrics (BWPU/CNTs/Al/NF) with a microporous structure using impregnation and coating techniques guided by the wet phase transition film-forming principle.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!